Todd M Palmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/340213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 2015, 1, e1400253.	4.7	2,475
2	Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science, 2011, 333, 880-882.	6.0	1,373
3	Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature, 2012, 489, 561-565.	13.7	448
4	Mutualisms in a changing world: an evolutionary perspective. Ecology Letters, 2010, 13, 1459-1474.	3.0	442
5	Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 2015, 349, 302-305.	6.0	315
6	Breakdown of an Ant-Plant Mutualism Follows the Loss of Large Herbivores from an African Savanna. Science, 2008, 319, 192-195.	6.0	251
7	Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17234-17239.	3.3	207
8	Spatial Pattern Enhances Ecosystem Functioning in an African Savanna. PLoS Biology, 2010, 8, e1000377.	2.6	198
9	Large carnivores make savanna tree communities less thorny. Science, 2014, 346, 346-349.	6.0	176
10	Competition and compensation among cattle, zebras, and elephants in a semi-arid savanna in Laikipia, Kenya. Biological Conservation, 2005, 122, 351-359.	1.9	171
11	Competition and Coexistence: Exploring Mechanisms That Restrict and Maintain Diversity within Mutualist Guilds. American Naturalist, 2003, 162, S63-S79.	1.0	169
12	Change in dominance determines herbivore effects on plant biodiversity. Nature Ecology and Evolution, 2018, 2, 1925-1932.	3.4	140
13	KLEE: A longâ€ŧerm multiâ€species herbivore exclusion experiment in Laikipia, Kenya. African Journal of Range and Forage Science, 1997, 14, 94-102.	0.6	135
14	Title is missing!. Landscape Ecology, 2002, 17, 647-656.	1.9	135
15	SPATIAL HABITAT HETEROGENEITY INFLUENCES COMPETITION AND COEXISTENCE IN AN AFRICAN ACACIA ANT GUILD. Ecology, 2003, 84, 2843-2855.	1.5	127
16	Sterilization and canopy modification of a swollen thorn acacia tree by a plant-ant. Nature, 1999, 401, 578-581.	13.7	121
17	Large herbivores facilitate savanna tree establishment via diverse and indirect pathways. Journal of Animal Ecology, 2010, 79, 372-382.	1.3	113
18	Predator-induced collapse of niche structure and species coexistence. Nature, 2019, 570, 58-64.	13.7	109

#	Article	IF	CITATIONS
19	Defensive Plant-Ants Stabilize Megaherbivore-Driven Landscape Change in an African Savanna. Current Biology, 2010, 20, 1768-1772.	1.8	106
20	Short-term dynamics of an acacia ant community in Laikipia, Kenya. Oecologia, 2000, 123, 425-435.	0.9	99
21	Wars of attrition: colony size determines competitive outcomes in a guild of African acacia ants. Animal Behaviour, 2004, 68, 993-1004.	0.8	97
22	Termites create spatial structure and govern ecosystem function by affecting N ₂ fixation in an East African savanna. Ecology, 2010, 91, 1296-1307.	1.5	95
23	COMPETITION–COLONIZATION TRADE-OFFS IN A GUILD OF AFRICAN ACACIA-ANTS. Ecological Monographs, 2002, 72, 347-363.	2.4	90
24	Effects of mammalian herbivore declines on plant communities: observations and experiments in an <scp>A</scp> frican savanna. Journal of Ecology, 2013, 101, 1030-1041.	1.9	89
25	Consequences of herbivory by native ungulates for the reproduction of a savanna tree. Journal of Ecology, 2007, 95, 129-138.	1.9	87
26	Piecewise Disassembly of a Large-Herbivore Community across a Rainfall Gradient: The UHURU Experiment. PLoS ONE, 2013, 8, e55192.	1.1	80
27	Ecological erosion of an Afrotropical forest and potential consequences for tree recruitment and forest biomass. Biological Conservation, 2013, 163, 122-130.	1.9	75
28	Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology, 2016, 97, 3219-3230.	1.5	72
29	Effects of simulated shoot and leaf herbivory on vegetative growth and plant defense in Acacia drepanolobium. Oikos, 2001, 92, 515-521.	1.2	71
30	MUTUALISM AS RECIPROCAL EXPLOITATION: AFRICAN PLANT-ANTS DEFEND FOLIAR BUT NOT REPRODUCTIVE STRUCTURES. Ecology, 2007, 88, 3004-3011.	1.5	66
31	Promises and challenges in insect–plant interactions. Entomologia Experimentalis Et Applicata, 2018, 166, 319-343.	0.7	66
32	Burning bridges: priority effects and the persistence of a competitively subordinate acacia-ant in Laikipia, Kenya. Oecologia, 2002, 133, 372-379.	0.9	64
33	Termites, vertebrate herbivores, and the fruiting success of Acacia drepanolobium. Ecology, 2010, 91, 399-407.	1.5	63
34	The high cost of mutualism: effects of four species of East African ant symbionts on their myrmecophyte host tree. Ecology, 2011, 92, 1073-1082.	1.5	63
35	Large herbivores promote habitat specialization and beta diversity of African savanna trees. Ecology, 2016, 97, 2640-2657.	1.5	61
36	RELAXATION OF INDUCED INDIRECT DEFENSES OF ACACIAS FOLLOWING EXCLUSION OF MAMMALIAN HERBIVORES. Ecology, 2004, 85, 609-614.	1.5	56

#	Article	IF	CITATIONS
37	Cryptic herbivores mediate the strength and form of ungulate impacts on a long-lived savanna tree. Ecology, 2011, 92, 1626-1636.	1.5	54
38	Low functional redundancy among mammalian browsers in regulating an encroaching shrub () Tj ETQq0 0 0 rg Sciences, 2014, 281, 20140390.	BT /Overloc 1.2	2k 10 Tf 50 703 53
39	Conservation lessons from largeâ€mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments. Annals of the New York Academy of Sciences, 2018, 1429, 31-49.	1.8	53
40	Synergistic effects of fire and elephants on arboreal animals in an <scp>A</scp> frican savanna. Journal of Animal Ecology, 2015, 84, 1637-1645.	1.3	48
41	Contextâ€dependent effects of largeâ€wildlife declines on smallâ€mammal communities in central Kenya. Ecological Applications, 2015, 25, 348-360.	1.8	47
42	Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade. Ecology, 2015, 96, 2705-2714.	1.5	47
43	Bottle or Big-Scale Studies: How do we do Ecology?. Ecology, 1996, 77, 681-685.	1.5	41
44	Enough is enough: the effects of symbiotic ant abundance on herbivory, growth, and reproduction in an African acacia. Ecology, 2013, 94, 683-691.	1.5	40
45	Disruption of a protective ant–plant mutualism by an invasive ant increases elephant damage to savanna trees. Ecology, 2015, 96, 654-661.	1.5	39
46	Interacting effects of land use and climate on rodent-borne pathogens in central Kenya. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160116.	1.8	39
47	Mechanisms of plant–plant interactions: concealment from herbivores is more important than abiotic-stress mediation in an African savannah. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132647.	1.2	38
48	Pollen Competition and Sporophyte Fitness in Brassica campestris: Does Intense Pollen Competition Result in Individuals with Better Pollen?. Oikos, 1994, 69, 80.	1.2	35
49	Good neighbors make good defenses: associational refuges reduce defense investment in African savanna plants. Ecology, 2018, 99, 1724-1736.	1.5	32
50	Aridity weakens population-level effects of multiple species interactions on <i>Hibiscus meyeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 543-548.	3.3	28
51	The influence of spatial heterogeneity on the behavior and growth of two herbivorous stream insects. Oecologia, 1995, 104, 476-486.	0.9	27
52	Interacting effects of wildlife loss and climate on ticks and tick-borne disease. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170475.	1.2	27
53	A comparison of volatiles in mandibular glands from three Crematogaster ant symbionts of the whistling thorn acacia. Biochemical Systematics and Ecology, 2002, 30, 217-222.	0.6	26
54	Climatic stress mediates the impacts of herbivory on plant population structure and components of individual fitness. Journal of Ecology, 2013, 101, 1074-1083.	1.9	25

#	Article	IF	CITATIONS
55	Climatic variation modulates the indirect effects of large herbivores on smallâ€mammal habitat use. Journal of Animal Ecology, 2017, 86, 739-748.	1.3	23
56	Effects of fire on bird diversity and abundance in an East African savanna. African Journal of Ecology, 2006, 44, 165-170.	0.4	21
57	Mutualism in a community context. , 2015, , 159-180.		20
58	Habitat-specific AMF symbioses enhance drought tolerance of a native Kenyan grass. Acta Oecologica, 2017, 78, 71-78.	0.5	19
59	Ecological Importance of Large Herbivores in the Ewaso Ecosystem. Smithsonian Contributions To Zoology, 2011, , 43-53.	1.0	19
60	Plant and smallâ€mammal responses to largeâ€herbivore exclusion in an African savanna: five years of the UHURU experiment. Ecology, 2014, 95, 787-787.	1.5	18
61	A role for indirect facilitation in maintaining diversity in a guild of African acacia ants. Ecology, 2013, 94, 1531-1539.	1.5	15
62	Seasonal patterns in decomposition and nutrient release from East African savanna grasses grown under contrasting nutrient conditions. Agriculture, Ecosystems and Environment, 2014, 188, 12-19.	2.5	15
63	OBSERVATIONS ON THE DIETARY CHOICE OF FREE-RANGING JUVENILE OSTRICHES. Ostrich, 1994, 65, 251-255.	0.4	14
64	Carbohydrate as Fuel for Foraging, Resource Defense and Colony Growth – a Longâ€ŧerm Experiment with the Plantâ€ant <i>Crematogaster nigriceps</i> . Biotropica, 2013, 45, 620-627.	0.8	14
65	Ecological barriers to early colony establishment in three coexisting acacia-ant species in Kenya. Insectes Sociaux, 2005, 52, 393-401.	0.7	13
66	The high cost of mutualism: effects of four species of East African ant symbionts on their myrmecophyte host tree. Ecology, 2011, 92, 1073-1082.	1.5	13
67	A Comparison of two Sampling Methods for Surveying Mammalian Herbivore Impacts on Beetle Communities in the Canopy ofAcacia drepanolobiumin Kenya. African Entomology, 2010, 18, 87-98.	0.6	12
68	Economy of scale: third partner strengthens a keystone antâ€plant mutualism. Ecology, 2018, 99, 335-346.	1.5	11
69	Large herbivores transform plant-pollinator networks in an African savanna. Current Biology, 2021, 31, 2964-2971.e5.	1.8	10
70	Large herbivores suppress liana infestation in an African savanna. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
71	Leveraging nature's backup plans to incorporate interspecific interactions and resilience into restoration. Restoration Ecology, 2016, 24, 434-440.	1.4	9
72	Influence of neighboring plants on the dynamics of an ant–acacia protection mutualism. Ecology, 2017, 98, 3034-3043.	1.5	9

#	Article	IF	CITATIONS
73	Strong but opposing effects of associational resistance and susceptibility on defense phenotype in an African savanna plant. Oikos, 2019, 128, 1772-1782.	1.2	9
74	Left out in the cold: temperatureâ€dependence of defense in an African ant–plant mutualism. Ecology, 2019, 100, e02712.	1.5	9
75	Mussels drive polychlorinated biphenyl (PCB) biomagnification in a coastal food web. Scientific Reports, 2021, 11, 9180.	1.6	9
76	Polygyny in the nest-site limited acacia-ant Crematogaster mimosae. Insectes Sociaux, 2013, 60, 231-241.	0.7	7
77	Colonisation and competition dynamics can explain incomplete sterilisation parasitism in ant-plant symbioses. Ecology Letters, 2014, 17, 1290-1298.	3.0	7
78	Density dependence and the spread of invasive big-headed ants (Pheidole megacephala) in an East African savanna. Oecologia, 2021, 195, 667-676.	0.9	7
79	Mutualism disruption by an invasive ant reduces carbon fixation for a foundational East African antâ€plant. Ecology Letters, 2021, 24, 1052-1062.	3.0	7
80	Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species' traits. Journal of Animal Ecology, 2021, 90, 2510-2522.	1.3	7
81	Ecological consequences of large herbivore exclusion in an <scp>A</scp> frican savanna: 12 years of data from the <scp>UHURU</scp> experiment. Ecology, 2022, 103, e3649.	1.5	6
82	Demographic consequences of mutualism disruption: Browsing and bigâ€headed ant invasion drive acacia population declines. Ecology, 2022, 103, e3655.	1.5	6
83	Effects of entomopathogenic fungus Metarhizium anisopliae on non-target ants associated with Odontotermes spp. (Isoptera: Termitidae) termite mounds in Kenya. International Journal of Tropical Insect Science, 2016, 36, 128-134.	0.4	5
84	A soilâ€nesting invasive ant disrupts carbon dynamics in saplings of a foundational ant–plant. Journal of Ecology, 2022, 110, 359-373.	1.9	5
85	An invasive ant reduces diversity but does not disrupt a key ecosystem function in an A frican savanna. Ecosphere, 2016, 7, e01502.	1.0	4
86	Impacts of worker density in colonyâ€level aggression, expansion, and survival of the acaciaâ€ant <i>Crematogaster mimosae</i> . Ecological Monographs, 2017, 87, 246-259.	2.4	4
87	Large mammals generate both top-down effects and extended trophic cascades on floral-visitor assemblages. Journal of Tropical Ecology, 2019, 35, 185-198.	0.5	4
88	Frenemy at the gate: Invasion by Pheidole megacephala facilitates a competitively subordinate plant ant in Kenya. Ecology, 2021, 102, e03230.	1.5	4
89	Volatiles in the mandibular gland of Tetraponera penzigi: A plant ant of the whistling thorn acacia. Biochemical Systematics and Ecology, 2006, 34, 536-538.	0.6	3
90	Using photography to estimate above-ground biomass of small trees. Journal of Tropical Ecology, 2020, 36, 213-219.	0.5	3

#	Article	IF	CITATIONS
91	Integrating Ecological Complexity into Our Understanding of Ant-Plant Mutualism: Ant-Acacia Interactions in African Savannas. , 2017, , 200-222.		2
92	What explains tick proliferation following large-herbivore exclusion?. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180612.	1.2	0
93	The complexity and variable nature of ant-Acaciamutualisms in the African savanna. , 2016, , .		0