Frank Szulzewsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/340203/publications.pdf

Version: 2024-02-01

41 papers

2,008 citations

304602 22 h-index 377752 34 g-index

45 all docs

45 docs citations

times ranked

45

3772 citing authors

#	Article	IF	CITATIONS
1	Glioma-Associated Microglia/Macrophages Display an Expression Profile Different from M1 and M2 Polarization and Highly Express Gpnmb and Spp1. PLoS ONE, 2015, 10, e0116644.	1.1	317
2	Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes and Development, 2017, 31, 774-786.	2.7	313
3	Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 2015, 6, 15077-15094.	0.8	154
4	Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro-Oncology, 2013, 15, 1457-1468.	0.6	115
5	Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nature Communications, 2020, 11, 4997.	5.8	109
6	Human glioblastomaâ€associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples. Glia, 2016, 64, 1416-1436.	2.5	90
7	Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. Oncolmmunology, 2019, 8, e1655360.	2.1	76
8	Vascular Signal Transducer and Activator of Transcription-3 Promotes Angiogenesis and Neuroplasticity Long-Term After Stroke. Circulation, 2015, 131, 1772-1782.	1.6	71
9	YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Developmental Biology, 2021, 475, 205-221.	0.9	62
10	The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon- \hat{l}^3 , and IL-4. Glia, 2014, 62, 667-679.	2.5	60
11	Altered microglial phagocytosis in GPR34â€deficient mice. Glia, 2015, 63, 206-215.	2.5	60
12	A De Novo Mouse Model of C11orf95-RELA Fusion-Driven Ependymoma Identifies Driver Functions in Addition to NF-ÎB. Cell Reports, 2018, 23, 3787-3797.	2.9	53
13	The subpopulation of microglia expressing functional muscarinic acetylcholine receptors expands in stroke and Alzheimer's disease. Brain Structure and Function, 2016, 221, 1157-1172.	1.2	51
14	Genetic driver mutations define the expression signature and microenvironmental composition of highâ€grade gliomas. Glia, 2017, 65, 1914-1926.	2.5	50
15	Tumour-associated macrophage-derived interleukin-1 mediates glioblastoma-associated cerebral oedema. Brain, 2019, 142, 3834-3851.	3.7	50
16	Comparison of tumor-associated YAP1 fusions identifies a recurrent set of functions critical for oncogenesis. Genes and Development, 2020, 34, 1051-1064.	2.7	48
17	Platelet-derived growth factor beta is a potent inflammatory driver in paediatric high-grade glioma. Brain, 2021, 144, 53-69.	3.7	43
18	Increased <i>HOXA5</i> expression provides a selective advantage for gain of whole chromosome 7 in IDH wild-type glioblastoma. Genes and Development, 2018, 32, 512-523.	2.7	40

#	Article	IF	CITATIONS
19	NTPDase1 activity attenuates microglial phagocytosis. Purinergic Signalling, 2013, 9, 199-205.	1.1	38
20	Anti–PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro-Oncology, 2020, 22, 639-651.	0.6	34
21	Loss of host-derived osteopontin creates a glioblastoma-promoting microenvironment. Neuro-Oncology, 2018, 20, 355-366.	0.6	32
22	Genetic driver mutations introduced in identical cellâ€ofâ€origin in murine glioblastoma reveal distinct immune landscapes but similar response to checkpoint blockade. Glia, 2020, 68, 2148-2166.	2.5	28
23	A kinase-deficient NTRK2 splice variant predominates in glioma and amplifies several oncogenic signaling pathways. Nature Communications, 2020, 11, 2977.	5.8	26
24	Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight, 2019, 4, .	2.3	24
25	C11orf95-RELA fusion drives aberrant gene expression through the unique epigenetic regulation for ependymoma formation. Acta Neuropathologica Communications, 2021, 9, 36.	2.4	14
26	Cooperation of oncolytic virotherapy with VEGF-neutralizing antibody treatment in IDH wildtype glioblastoma depends on MMP9. Neuro-Oncology, 2019, 21, 1607-1609.	0.6	9
27	Phenotypic characterization with somatic genome editing and gene transfer reveals the diverse oncogenicity of ependymoma fusion genes. Acta Neuropathologica Communications, 2020, 8, 203.	2.4	8
28	Mathematical modeling of PDGF-driven glioma reveals the dynamics of immune cells infiltrating into tumors. Neoplasia, 2020, 22, 323-332.	2.3	8
29	Multimodal singleâ€cell analysis reveals distinct radioresistant stemâ€like and progenitor cell populations in murine glioma. Glia, 2020, 68, 2486-2502.	2.5	8
30	Leveraging the replicationâ€competent avianâ€like sarcoma virus/tumor virus receptorâ€A system for modeling human gliomas. Glia, 2021, 69, 2059-2076.	2.5	7
31	OUP accepted manuscript. Neuro-Oncology, 2021, 23, S4-S15.	0.6	3
32	PDTM-43. THE ROLE OF TUMOR ASSOCIATED MACROPHAGES IN PEDIATRIC HIGH-GRADE GLIOMA. Neuro-Oncology, 2018, 20, vi213-vi213.	0.6	1
33	GENE-04. THE ONCOGENIC FUNCTIONS OF YAP1-GENE FUSIONS CAN BE INHIBITED BY DISRUPTION OF YAP1-TEAD INTERACTION. Neuro-Oncology, 2019, 21, vi98-vi98.	0.6	1
34	Fusing the Genetic Landscape of Infantile High-Grade Gliomas. Cancer Discovery, 2020, 10, 904-906.	7.7	1
35	TMIC-17. SUBTYPE-SPECIFIC CELLULAR COMPOSITION OF THE GLIOBLASTOMA MICROENVIRONMENT. Neuro-Oncology, 2016, 18, vi203-vi203.	0.6	O
36	EPND-09. THE ONCOGENIC EFFECT OF C11ORF95-RELA FUSION MOSTLY DERIVES FROM FACTOR OTHER THAN NF-ÎSB ACTIVATION IN SUPRATENTORIAL EPENDYMOMA. Neuro-Oncology, 2017, 19, iv17-iv17.	0.6	0

3

#	Article	IF	CITATIONS
37	TMIC-05. ABSCOPAL IMMUNE RESPONSE IN GLIOBLASTOMA ELICITED BY MIR124-ATTENUATED ONCOLYTIC HERPES SIMPLEX VIRUS 1 ARMED WITH UL16 BINDING PROTEIN 3. Neuro-Oncology, 2018, 20, vi256-vi257.	0.6	0
38	TMIC-53. IDENTIFICATION OF MYELOID CELL-DERIVED TRANSCRIPTS IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi268-vi268.	0.6	0
39	TMOD-09. TUMOR ASSOCIATED MACROPHAGE DYNAMICS IN PEDIATRIC HIGH-GRADE GLIOMAS. Neuro-Oncology, 2019, 21, ii123-ii123.	0.6	0
40	PDTM-11. GAINING INSIGHTS INTO THE INFLAMMATORY MICROENVIRONMENT OF PEDIATRIC HIGH-GRADE GLIOMAS USING GEMMs AND PATIENT SAMPLES. Neuro-Oncology, 2019, 21, vi189-vi189.	0.6	0
41	TMOD-30. CHARACTERIZATION OF AN ALTERNATIVELY SPLICED NTRK2 VARIANT IN GLIOMAS. Neuro-Oncology, 2019, 21, vi269-vi269.	0.6	0