Xuecheng Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3401937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Advanced Materials, 2016, 28, 9532-9538.	21.0	961
2	A Heterostructure Coupling of Exfoliated Ni–Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Materials, 2017, 29, 1700017.	21.0	845
3	Graphene Defects Trap Atomic Ni Species for Hydrogen and Oxygen Evolution Reactions. CheM, 2018, 4, 285-297.	11.7	624
4	Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nature Communications, 2016, 7, 10667.	12.8	577
5	Coordination of Atomic Co–Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 10757-10763.	13.7	464
6	Defects on carbons for electrocatalytic oxygen reduction. Chemical Society Reviews, 2018, 47, 7628-7658.	38.1	432
7	Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nature Catalysis, 2019, 2, 688-695.	34.4	423
8	Carbon for the oxygen reduction reaction: a defect mechanism. Journal of Materials Chemistry A, 2015, 3, 11736-11739.	10.3	261
9	Edgeâ€Rich Feâ^'N ₄ Active Sites in Defective Carbon for Oxygen Reduction Catalysis. Advanced Materials, 2020, 32, e2000966.	21.0	215
10	Recent Progress in Oxygen Electrocatalysts for Zinc–Air Batteries. Small Methods, 2017, 1, 1700209.	8.6	183
11	Defectiveâ€Activatedâ€Carbonâ€Supported Mn–Co Nanoparticles as a Highly Efficient Electrocatalyst for Oxygen Reduction. Advanced Materials, 2016, 28, 8771-8778.	21.0	175
12	Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Research, 2018, 11, 3509-3518.	10.4	167
13	Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping. Inorganic Chemistry Frontiers, 2016, 3, 417-421.	6.0	146
14	Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions. Chemical Communications, 2016, 52, 8156-8159.	4.1	145
15	Single Carbon Vacancy Traps Atomic Platinum for Hydrogen Evolution Catalysis. Journal of the American Chemical Society, 2022, 144, 2171-2178.	13.7	140
16	Plasmaâ€Triggered Synergy of Exfoliation, Phase Transformation, and Surface Engineering in Cobalt Diselenide for Enhanced Water Oxidation. Angewandte Chemie - International Edition, 2018, 57, 16421-16425.	13.8	120
17	A Directional Synthesis for Topological Defect in Carbon. CheM, 2020, 6, 2009-2023.	11.7	120
18	Defective Structures in Metal Compounds for Energyâ€Related Electrocatalysis. Small Structures, 2021, 2. 2000067.	12.0	97

XUECHENG YAN

#	Article	IF	CITATIONS
19	Nanosheets Co ₃ O ₄ Interleaved with Graphene for Highly Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2015, 7, 21373-21380.	8.0	96
20	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 9404-9408.	13.8	87
21	One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 11666-11671.	10.3	84
22	Activity Origins in Nanocarbons for the Electrocatalytic Hydrogen Evolution Reaction. Small, 2018, 14, e1800235.	10.0	68
23	Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. CheM, 2022, 8, 2715-2733.	11.7	66
24	Metallic Ni nanocatalyst in situ formed from a metal–organic-framework by mechanochemical reaction for hydrogen storage in magnesium. Journal of Materials Chemistry A, 2015, 3, 8294-8299.	10.3	65
25	Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 2021, 13, 3327-3345.	5.6	60
26	Assessment of sugarcane bagasse gasification in supercritical water for hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 13711-13719.	7.1	59
27	Controllable synthesis of Fe–N ₄ species for acidic oxygen reduction. , 2020, 2, 452-460.		50
28	Defective Carbons Derived from Macadamia Nut Shell Biomass for Efficient Oxygen Reduction and Supercapacitors. ChemElectroChem, 2018, 5, 1874-1879.	3.4	47
29	Hexagonal Sphericon Hematite with High Performance for Water Oxidation. Advanced Materials, 2017, 29, 1703792.	21.0	46
30	Shape controllable synthesis of NdFeO ₃ micro single crystals by a hydrothermal route. CrystEngComm, 2014, 16, 858-862.	2.6	42
31	Grafting Cobalt Diselenide on Defective Graphene for Enhanced Oxygen Evolution Reaction. IScience, 2018, 7, 145-153.	4.1	39
32	Y ₂ O ₃ :Yb ³⁺ /Er ³⁺ Hollow Spheres with Controlled Inner Structures and Enhanced Upconverted Photoluminescence. Small, 2015, 11, 2768-2773.	10.0	35
33	Clarifying the Origin of Oxygen Reduction Activity in Heteroatom-Modified Defective Carbon. Cell Reports Physical Science, 2020, 1, 100083.	5.6	35
34	Defective carbon-based materials: controllable synthesis and electrochemical applications. EnergyChem, 2021, 3, 100059.	19.1	34
35	Probing the Active Sites of Carbonâ€Encapsulated Cobalt Nanoparticles for Oxygen Reduction. Small Methods, 2019, 3, 1800439.	8.6	33
36	Boosting oxygen reduction and hydrogen evolution at the edge sites of a web-like carbon nanotube-graphene hybrid. Carbon, 2016, 107, 739-746.	10.3	25

XUECHENG YAN

#	Article	IF	CITATIONS
37	Defective graphene anchored iron–cobalt nanoparticles for efficient electrocatalytic oxygen reduction. Chemical Communications, 2017, 53, 12140-12143.	4.1	24
38	A cascade surface immobilization strategy to access high-density and closely distanced atomic Pt sites for enhancing alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 5255-5262.	10.3	21
39	One-step In-situ Synthesis of Vacancy-rich CoFe2O4@Defective Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. Chemical Research in Chinese Universities, 2020, 36, 479-487.	2.6	20
40	Catalytic Hydrogenation of Carbon Dioxide to Fuels. Current Organic Chemistry, 2014, 18, 1335-1345.	1.6	16
41	Facile solvothermal synthesis of gear-shaped submicrostructured Y2O3:Eu3+ phosphor. Solid State Sciences, 2011, 13, 1060-1064.	3.2	13
42	Platinum stabilized by defective activated carbon with excellent oxygen reduction performance in alkaline media. Chinese Journal of Catalysis, 2017, 38, 1011-1020.	14.0	13
43	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 9504-9508.	2.0	10
44	Synthesis of CePO ₄ Nano-Wires with Improved Photoluminescent Properties by Co-Crystallizing with Nano-Sized CeO ₂ . Journal of Nanoscience and Nanotechnology, 2013, 13, 1498-1502.	0.9	4
45	Morphology-tailored synthesis of flower-like Y2O3:Eu3+ microspheres. Materials Research Bulletin, 2012, 47, 2135-2139.	5.2	3