Rodolfo Jaffé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3401766/publications.pdf

Version: 2024-02-01

70 papers

3,118 citations

28 h-index 182427 51 g-index

78 all docs 78 docs citations

78 times ranked 3930 citing authors

#	Article	IF	CITATIONS
1	Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (<scp>EBVs</scp>) for genetic composition. Biological Reviews, 2022, 97, 1511-1538.	10.4	73
2	Genetic diversity and structure of an endangered medicinal plant species (Pilocarpus microphyllus) in eastern Amazon: implications for conservation. Conservation Genetics, 2022, 23, 745-758.	1.5	3
3	Combining genotype, phenotype, and environmental data to delineate siteâ€∎djusted provenance strategies for ecological restoration. Molecular Ecology Resources, 2021, 21, 44-58.	4.8	41
4	Long-term storage shapes ejaculate traits in a monogamous stingless bee (Scaptotrigona aff. depilis). Apidologie, 2021, 52, 242-251.	2.0	1
5	Landscape heterogeneity and habitat amount drive plant diversity in Amazonian canga ecosystems. Landscape Ecology, 2021, 36, 393-406.	4.2	15
6	Effective population size remains a suitable, pragmatic indicator of genetic diversity for all species, including forest trees. Biological Conservation, 2021, 253, 108906.	4.1	32
7	Optimizing speleological monitoring efforts: insights from long-term data for tropical iron caves. Peerl, 2021, 9, e11271.	2.0	3
8	Combining connectivity and species distribution modeling to define conservation and restoration priorities for multiple species: A case study in the eastern Amazon. Biological Conservation, 2021, 257, 109148.	4.1	15
9	Conservation implications of genetic structure in the narrowest endemic quillwort from the Eastern Amazon. Ecology and Evolution, 2021, 11, 10119-10132.	1.9	9
10	Forecasting deforestation in the Brazilian Amazon to prioritize conservation efforts. Environmental Research Letters, 2021, 16, 084034.	5.2	13
11	Higher forest cover and less contrasting matrices improve carrion removal service by scavenger insects in tropical landscapes. Journal of Applied Ecology, 2021, 58, 2637.	4.0	1
12	Shannon tree diversity is a surrogate for mineland rehabilitation status. Ecological Indicators, 2021, 130, 108100.	6.3	11
13	Integrating environmental variables by multivariate ordination enables the reliable estimation of mineland rehabilitation status. Journal of Environmental Management, 2020, 256, 109894.	7.8	21
14	Multiple conceptualizations of nature are key to inclusivity and legitimacy in global environmental governance. Environmental Science and Policy, 2020, 104, 36-42.	4.9	45
15	Forest proximity rather than local forest cover affects bee diversity and coffee pollination services. Landscape Ecology, 2020, 35, 1841-1855.	4.2	27
16	Post-2020 goals overlook genetic diversity. Science, 2020, 367, 1083-1085.	12.6	132
17	Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation, 2020, 248, 108654.	4.1	285
18	Range-wide neutral and adaptive genetic structure of an endemic herb from Amazonian Savannas. AoB PLANTS, 2020, 12, plaa003.	2.3	19

#	Article	IF	CITATIONS
19	QUALIS: The journal ranking system undermining the impact of Brazilian science. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20201116.	0.8	3
20	Valuing nature's contribution to people: The pollination services provided by two protected areas in Brazil. Global Ecology and Conservation, 2019, 20, e00782.	2.1	12
21	Mapping and quantification of ferruginous outcrop savannas in the Brazilian Amazon: A challenge for biodiversity conservation. PLoS ONE, 2019, 14, e0211095.	2.5	36
22	Landscape genomics to the rescue of a tropical bee threatened by habitat loss and climate change. Evolutionary Applications, 2019, 12, 1164-1177.	3.1	41
23	Biodiversity surrogates in Amazonian iron cave ecosystems. Ecological Indicators, 2019, 101, 813-820.	6.3	12
24	Habitat Loss Does Not Always Entail Negative Genetic Consequences. Frontiers in Genetics, 2019, 10, 1011.	2.3	32
25	Everything you always wanted to know about gene flow in tropical landscapes (but were afraid to) Tj ETQq1 1 0.	.784314 rş 2.0	gBT/Overlock
26	Anthropogenic disturbance of tropical forests threatens pollination services to açaÃ-palm in the Amazon river delta. Journal of Applied Ecology, 2018, 55, 1725-1736.	4.0	54
27	Influence of water quality on diversity and composition of fungal communities in a tropical river. Scientific Reports, 2018, 8, 14799.	3.3	24
28	Landscape Genomic Conservation Assessment of a Narrow-Endemic and a Widespread Morning Glory From Amazonian Savannas. Frontiers in Plant Science, 2018, 9, 532.	3.6	48
29	Quillworts from the Amazon: A multidisciplinary populational study on Isoetes serracarajensis and Isoetes cangae. PLoS ONE, 2018, 13, e0201417.	2.5	20
30	Blind Testing: DNA Barcoding Sheds Light Upon the Identity of Plant Fragments as a Subsidy for Cave Conservation. Frontiers in Plant Science, 2018, 9, 1052.	3.6	7
31	Wind Speed Affects Pollination Success in Blackberries. Sociobiology, 2018, 65, 225.	0.5	5
32	Conserving relics from ancient underground worlds: assessing the influence of cave and landscape features on obligate iron cave dwellers from the Eastern Amazon. PeerJ, 2018, 6, e4531.	2.0	20
33	Pontos crÃŧicos de agroecossistemas melÃponas no Semiárido norte-rio-grandense do Brasil. Sociedade & Natureza, 2018, 30, 110-131.	0.0	1
34	Protecting a managed bee pollinator against climate change: strategies for an area with extreme climatic conditions and socioeconomic vulnerability. Apidologie, 2017, 48, 784-794.	2.0	32
35	Dynamic microbiome evolution in social bees. Science Advances, 2017, 3, e1600513.	10.3	349
36	Quantitative conservation genetics of wild and managed bees. Conservation Genetics, 2017, 18, 689-700.	1.5	8

#	Article	IF	CITATIONS
37	Selecting plant species for practical restoration of degraded lands using a multiple-trait approach. Austral Ecology, 2017, 42, 510-521.	1.5	56
38	Competitive males have higher quality sperm in a monogamous social bee. BMC Evolutionary Biology, 2016, 16, 195.	3.2	13
39	Reconciling Mining with the Conservation of Cave Biodiversity: A Quantitative Baseline to Help Establish Conservation Priorities. PLoS ONE, 2016, 11, e0168348.	2.5	37
40	Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees. Molecular Ecology, 2016, 25, 5345-5358.	3.9	66
41	Landscape structure influences bee community and coffee pollination at different spatial scales. Agriculture, Ecosystems and Environment, 2016, 235, 1-12.	5.3	88
42	Genetic variability in captive populations of the stingless bee Tetragonisca angustula. Genetica, 2016, 144, 397-405.	1.1	7
43	Landscape genetics of a tropical rescue pollinator. Conservation Genetics, 2016, 17, 267-278.	1.5	71
44	Elevation, Not Deforestation, Promotes Genetic Differentiation in a Pioneer Tropical Tree. PLoS ONE, 2016, 11, e0156694.	2.5	32
45	Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change. PLoS ONE, 2015, 10, e0129225.	2.5	34
46	Temporal Variation in Honey Production by the Stingless Bee Melipona subnitida (Hymenoptera:) Tj ETQq0 0 0 rg Journal of Economic Entomology, 2015, 108, 858-867.	gBT /Overl	ock 10 Tf 50 3 8
47	Love Buzz. BioScience, 2015, 65, 527-528.	4.9	O
48	On the bioeconomics of shame and guilt. Journal of Bioeconomics, 2015, 17, 137-149.	3.3	6
49	Assessing Sperm Quality in Stingless Bees. Sociobiology, 2015, 61, .	0.5	8
50	Bees for Development: Brazilian Survey Reveals How to Optimize Stingless Beekeeping. PLoS ONE, 2015, 10, e0121157.	2.5	122
51	Detecting Nasal Vowels in Speech Interfaces Based on Surface Electromyography. PLoS ONE, 2015, 10, e0127040.	2.5	9
52	Monogamy in large bee societies: a stingless paradox. Die Naturwissenschaften, 2014, 101, 261-264.	1.6	23
53	An Updated Guide to Study Polyandry in Social Insects. Sociobiology, 2014, 61, 1-8.	0.5	15
54	Stingless bees in urban areas: a new leisure activity or a honey trade - the example of Chapeco, an average town of Santa Catarina, Brazil. Cahiers Agricultures, 2014, 23, 366-373.	0.9	1

#	Article	IF	CITATIONS
55	Conserving genetic diversity in the honeybee: Comments on Harpur <i>etÂal</i> . (2012). Molecular Ecology, 2013, 22, 3208-3210.	3.9	43
56	Miscellaneous standard methods for <i>Apis mellifera </i> research. Journal of Apicultural Research, 2013, 52, 1-53.	1.5	199
57	PATTERNS OF PATERNITY SKEW AMONG POLYANDROUS SOCIAL INSECTS: WHAT CAN THEY TELL US ABOUT THE POTENTIAL FOR SEXUAL SELECTION?. Evolution; International Journal of Organic Evolution, 2012, 66, 3778-3788.	2.3	28
58	Deformed wing virus and drone mating flights in the honey bee (Apis mellifera): implications for sexual transmission of a major honey bee virus. Apidologie, 2012, 43, 17-30.	2.0	52
59	Mating flights select for symmetry in honeybee drones (Apis mellifera). Die Naturwissenschaften, 2010, 97, 337-343.	1.6	31
60	Estimating the Density of Honeybee Colonies across Their Natural Range to Fill the Gap in Pollinator Decline Censuses. Conservation Biology, 2010, 24, 583-593.	4.7	128
61	Gene flow is maintained by polyandry and male dispersal in the army ant <i>Eciton burchellii</i> Population Ecology, 2009, 51, 227-236.	1.2	23
62	Temporal variation in the genetic structure of a drone congregation area: an insight into the population dynamics of wild African honeybees (<i>Apis mellifera scutellata</i>). Molecular Ecology, 2009, 18, 1511-1522.	3.9	37
63	Biodiversity, conservation and current threats to European honeybees. Apidologie, 2009, 40, 263-284.	2.0	290
64	Patterns of <i>Azteca</i> ants' defence of <i>Cecropia</i> trees in a tropical rainforest: support for optimal defence theory. Ecological Research, 2008, 23, 905-908.	1.5	8
65	Monitoring an Endangered Freshwater Turtle Management Program: Effects of Nest Relocation on Growth and Locomotive Performance of the Giant South American Turtle (Podocnemis expansa,) Tj ETQq $1\ 1\ 0.7$	84 81 64 rgB	BT Ø verlock
66	Male song variation of Green Violetear (Colibri thalassinus) in the Talamanca Mountain Range, Costa Rica. Wilson Journal of Ornithology, 2008, 120, 519-524.	0.2	5
67	Worker caste determination in the army ant <i>Eciton burchellii</i> . Biology Letters, 2007, 3, 513-516.	2.3	61
68	CAUTION, WEBS IN THE WAY! POSSIBLE FUNCTIONS OF SILK STABILIMENTA IN GASTERACANTHA CANCRIFORMIS (ARANEAE, ARANEIDAE). Journal of Arachnology, 2006, 34, 448-455.	0.5	20
69	Chemical ecology of the palm weevilRhynchophorus palmarum (L.) (Coleoptera: Curculionidae): Attraction to host plants and to a male-produced aggregation pheromone. Journal of Chemical Ecology, 1993, 19, 1703-1720.	1.8	101
70	How Can We All Help Conserve Nature?. Frontiers for Young Minds, 0, 7, .	0.8	2