
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3401691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Latest developments on the viscosity of nanofluids. International Journal of Heat and Mass Transfer, 2012, 55, 874-885.	2.5	516
2	The green reduction of graphene oxide. RSC Advances, 2016, 6, 27807-27828.	1.7	235
3	Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renewable Energy, 2018, 121, 36-44.	4.3	204
4	Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Solar Energy, 2018, 166, 334-350.	2.9	196
5	Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant. International Communications in Heat and Mass Transfer, 2014, 54, 48-53.	2.9	188
6	Effect of particle size on the viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 2018, 82, 1664-1674.	8.2	178
7	A comparative review on the specific heat of nanofluids for energy perspective. Renewable and Sustainable Energy Reviews, 2014, 38, 88-98.	8.2	176
8	An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. International Journal of Heat and Mass Transfer, 2014, 74, 164-172.	2.5	161
9	Effect of Ultrasonication Duration on Colloidal Structure and Viscosity of Alumina–Water Nanofluid. Industrial & Engineering Chemistry Research, 2014, 53, 6677-6684.	1.8	161
10	Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants. International Journal of Heat and Mass Transfer, 2013, 57, 100-108.	2.5	155
11	Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrasonics Sonochemistry, 2017, 37, 360-367.	3.8	137
12	Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. International Communications in Heat and Mass Transfer, 2013, 44, 93-99.	2.9	133
13	Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. International Communications in Heat and Mass Transfer, 2014, 50, 8-14.	2.9	131
14	Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. International Journal of Heat and Mass Transfer, 2014, 70, 289-297.	2.5	125
15	Effect of particle concentration, temperature and surfactant on surface tension of nanofluids. International Communications in Heat and Mass Transfer, 2013, 49, 110-114.	2.9	124
16	An overview on the effect of ultrasonication duration on different properties of nanofluids. Journal of Thermal Analysis and Calorimetry, 2019, 135, 393-418.	2.0	121
17	Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant. International Communications in Heat and Mass Transfer, 2013, 43, 100-104.	2.9	115
18	Thermal Conductivity, Viscosity and Density of R141b Refrigerant based Nanofluid. Procedia Engineering, 2013, 56, 310-315.	1.2	113

#	Article	IF	CITATIONS
19	Effective ultrasonication process for better colloidal dispersion of nanofluid. Ultrasonics Sonochemistry, 2015, 26, 361-369.	3.8	110
20	Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid. Clean Technologies and Environmental Policy, 2015, 17, 1457-1473.	2.1	100
21	Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer, 2016, 97, 547-558.	2.5	98
22	Energy savings in the combustion based process heating in industrial sector. Renewable and Sustainable Energy Reviews, 2012, 16, 4527-4536.	8.2	97
23	Optical properties of various nanofluids used in solar collector: A review. Renewable and Sustainable Energy Reviews, 2017, 73, 1014-1030.	8.2	96
24	Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina–water nanofluid. International Journal of Heat and Mass Transfer, 2015, 88, 73-81.	2.5	84
25	Analysis of entropy generation using nanofluid flow through the circular microchannel and minichannel heat sink. International Communications in Heat and Mass Transfer, 2013, 46, 85-91.	2.9	82
26	Thermal performance analysis of Al2O3/R-134a nanorefrigerant. International Journal of Heat and Mass Transfer, 2015, 85, 1034-1040.	2.5	79
27	Energy and exergy analysis of alumina–water nanofluid for an electronic liquid cooling system. International Communications in Heat and Mass Transfer, 2014, 57, 118-127.	2.9	68
28	Experimental investigation on surface tension of metal oxide–water nanofluids. International Communications in Heat and Mass Transfer, 2015, 65, 82-88.	2.9	68
29	Effectiveness Study of a Shell and Tube Heat Exchanger Operated with Nanofluids at Different Mass Flow Rates. Numerical Heat Transfer; Part A: Applications, 2014, 65, 699-713.	1.2	51
30	Stability, thermophysical properties and performance assessment of alumina–water nanofluid with emphasis on ultrasonication and storage period. Powder Technology, 2019, 345, 668-675.	2.1	49
31	Influence of ultrasonication duration on rheological properties of nanofluid: An experimental study with alumina–water nanofluid. International Communications in Heat and Mass Transfer, 2016, 76, 33-40.	2.9	48
32	Heat Transfer and Pressure Drop Characteristics of Al2O3-R141b Nanorefrigerant in Horizontal Smooth Circular Tube. Procedia Engineering, 2013, 56, 323-329.	1.2	47
33	Exergy and entropy generation analysis of TiO2–water nanofluid flow through the water block as an electronics device. International Journal of Heat and Mass Transfer, 2016, 101, 104-111.	2.5	46
34	Effect of temperature and volume fraction on rheology of methanol based nanofluids. International Journal of Heat and Mass Transfer, 2014, 77, 765-769.	2.5	44
35	Data-driven methods for estimating the effective thermal conductivity of nanofluids: A comprehensive review. International Journal of Heat and Mass Transfer, 2019, 131, 1211-1231.	2.5	44
36	Performance assessment of a solar powered ammonia–water absorption refrigeration system with storage units. Energy Conversion and Management, 2016, 126, 316-328.	4.4	43

#	Article	IF	CITATIONS
37	Experimental testing of the performance of a solar absorption cooling system assisted with ice-storage for an office space. Energy Conversion and Management, 2017, 148, 1399-1408.	4.4	43
38	Deoxygenation of graphene oxide using household baking soda as a reducing agent: a green approach. RSC Advances, 2015, 5, 70461-70472.	1.7	39
39	Rheological behavior of Al2O3/R141b nanorefrigerant. International Journal of Heat and Mass Transfer, 2014, 73, 118-123.	2.5	32
40	Experimental investigation of the relation between yield stress and ultrasonication period of nanofluid. International Journal of Heat and Mass Transfer, 2016, 93, 1169-1174.	2.5	31
41	Experimental analysis of energy and friction factor for titanium dioxide nanofluid in a water block heat sink. International Journal of Heat and Mass Transfer, 2017, 115, 77-85.	2.5	30
42	Heat Transfer Performance of Different Nanofluids Flows in a Helically Coiled Heat Exchanger. Advanced Materials Research, 0, 832, 160-165.	0.3	28
43	Migration Properties of TiO2 Nanoparticles during the Pool Boiling of Nanorefrigerants. Industrial & Engineering Chemistry Research, 2013, 52, 6032-6038.	1.8	27
44	Performance evaluation of a shell and tube heat exchanger operated with oxide based nanofluids. Heat and Mass Transfer, 2016, 52, 1425-1433.	1.2	18
45	Preparation of Nanofluid. , 2019, , 15-45.		17
46	Nanofluids for Thermal Performance Improvement in Cooling of Electronic Device. Advanced Materials Research, 2013, 832, 218-223.	0.3	16
47	Experimental and numerical study of nanofluid flow and heat transfer over microscale forward-facing step. International Communications in Heat and Mass Transfer, 2014, 57, 319-329.	2.9	16
48	Stability and Dispersion Characterization of Nanofluid. , 2019, , 47-112.		15
49	Energy, Exergy, and Friction Factor Analysis of Nanofluid as a Coolant for Electronics. Industrial & Engineering Chemistry Research, 2014, 53, 10512-10518.	1.8	13
50	Energy and Environmental Effects of Shell and Tube Heat Exchanger by Using Nanofluid as a Coolant ^{â€} . Journal of Chemical Engineering of Japan, 2014, 47, 340-344.	0.3	11
51	Performance Investigation of a Plate Heat Exchanger Using Nanofluid with Different Chevron Angle. Advanced Materials Research, 2013, 832, 254-259.	0.3	10
52	Introduction to Nanofluid. , 2019, , 1-13.		8
53	Global Effects of MWCNT-W Nanofluid in a Shell & Tube Heat Exchanger. Advanced Materials Research, 0, 832, 154-159.	0.3	7
54	Application of Nanofluid. , 2019, , 317-350.		4

#	Article	IF	CITATIONS
55	Influence of Nanoparticle Type, Size and Weight on Migration Properties of Nanorefrigerant. Advanced Materials Research, 0, 832, 45-50.	0.3	3
56	Quality function deployment approach to measure supply chain performance: a case study on garments accessories industries. International Journal of Industrial and Systems Engineering, 2016, 22, 96.	0.1	3
57	Prospective and Challenging Issues of Biofuels. , 2020, 1, 4-10.		3
58	Thermophysical Properties of Nanofluids. , 2019, , 113-196.		2
59	Rheological Behavior of Nanofluid. , 2019, , 197-229.		2
60	Optical Properties of Nanofluid. , 2019, , 231-272.		2
61	Correlation and Theoretical Analysis of Nanofluids. , 2019, , 273-316.		0