Takayuki Amemiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3401651/publications.pdf

Version: 2024-02-01

		1307594	1372567
13	330	7	10
papers	citations	h-index	g-index
13	13	13	425
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural changes of homodimers in the PDB. Journal of Structural Biology, 2018, 202, 42-50.	2.8	3
2	Interface property responsible for effective interactions of protean segments: Intrinsically disordered regions that undergo disorder-to-order transitions upon binding. Biochemical and Biophysical Research Communications, 2016, 478, 123-127.	2.1	5
3	IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Research, 2014, 42, D320-D325.	14.5	88
4	An assignment of intrinsically disordered regions of proteins based on NMR structures. Journal of Structural Biology, 2013, 181, 29-36.	2.8	26
5	Substrateâ€shielding and hydrolytic reaction in hydrolases. Proteins: Structure, Function and Bioinformatics, 2013, 81, 926-932.	2.6	1
6	IDEAL: Intrinsically Disordered proteins with Extensive Annotations and Literature. Nucleic Acids Research, 2012, 40, D507-D511.	14.5	84
7	PSCDB: a database for protein structural change upon ligand binding. Nucleic Acids Research, 2012, 40, D554-D558.	14.5	45
8	111436 Computational analysis of protean segments (ProSs) in intrinsically disordered proteins (IDPs)(Bioinformatics & Discourse (IDPs)(Bioinf	T (Overloci	k 0 0 Tf 50 45
9	Classification and Annotation of the Protein Structural Change upon Ligand Binding. Seibutsu Butsuri, 2012, 52, 194-195.	0.1	0
10	Classification and Annotation of the Relationship between Protein Structural Change and Ligand Binding. Journal of Molecular Biology, 2011, 408, 568-584.	4.2	43
11	SAHG, a comprehensive database of predicted structures of all human proteins. Nucleic Acids Research, 2011, 39, D487-D493.	14.5	12
12	3P-018 Development of an exhaustive comparative simulation system(Protein:Structure,The 47th) Tj ETQq0 0 0 rş	gBT /Overl	ogk 10 Tf 50
13	Protein Structural Change upon Ligand Binding Correlates with Enzymatic Reaction Mechanism. Journal of Molecular Biology, 2008, 379, 397-401.	4.2	23