Sotirios Nik Longinos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/340163/publications.pdf

Version: 2024-02-01

758635 887659 25 317 12 citations h-index g-index papers

25 25 25 131 docs citations times ranked citing authors all docs

17

#	Article	IF	CITATIONS
1	The effect of microbial growth on physicochemical properties of biodiesel–diesel mixtures. Brazilian Journal of Chemical Engineering, 2022, 39, 345-360.	0.7	1
2	Examination of Five Amino Acids as Gas Hydrate Kinetic Inhibitors in Oil and Gas Industry., 2022,,.		1
3	Cyclic LN2 Treatment of Coal Samples from Coal Basin in Kazakhstan. , 2022, , .		4
4	Kinetic Analysis of Methane Hydrate Formation with Butterfly Turbine Impellers. Molecules, 2022, 27, 4388.	1.7	3
5	Kinetic Analysis of Methane–Propane Hydrate Formation by the Use of Different Impellers. ACS Omega, 2021, 6, 1636-1646.	1.6	23
6	Kinetic analysis of dual impellers on methane hydrate formation. International Journal of Chemical Reactor Engineering, 2021, 19, 155-165.	0.6	17
7	The effect of experimental conditions on methane hydrate formation by the use of single and dual impellers. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 771-794.	0.8	20
8	Are the amino acids inhibitors or promoters on methane (95%)–propane (5%) hydrate formation?. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 795-809.	0.8	17
9	Kinetic analysis of CO2 hydrate formation by the use of different impellers. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 85-100.	0.8	14
10	Kinetic study of the effect of amino acids on methane (95%) $\hat{a}\in$ "propane (5%) hydrate formation. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 753-763.	0.8	7
11	Examination of methane hydrate formation by the use of dual impeller combinations. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 729-740.	0.8	13
12	Kinetic analysis of arginine, glycine and valine on methane (95%)–propane (5%) hydrate formation. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 741-751.	0.8	14
13	Examination of asparagine, aspartic acid and threonine in methane (95%)-propane (5%) gas hydrates as kinetic inhibitors. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 87-94.	0.8	7
14	Kinetic study of methane hydrate formation with the use of a surface baffle. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 75.	0.8	4
15	Synthesis and Heavy-Metal Sorption Studies of N,N-Dimethylacrylamide-Based Hydrogels. Polymers, 2021, 13, 3084.	2.0	10
16	Examination of behavior of lysine on methane (95%)–propane (5%) hydrate formation by the use of different impellers. Journal of Petroleum Exploration and Production, 2021, 11, 1823-1831.	1.2	13
17	The impact of methionine, tryptophan and proline on methane (95%)–propane (5%) hydrate formation. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 653-664.	0.8	3
18	A Short Review on the N,N-Dimethylacrylamide-Based Hydrogels. Gels, 2021, 7, 234.	2.1	20

#	Article	IF	CITATIONS
19	The Effect of Experimental Conditions on Methane (95%)–Propane (5%) Hydrate Formation. Energies, 2020, 13, 6710.	1.6	17
20	Natural Gas Hydrates: Possible Environmental Issues. , 2020, , 277-293.		4
21	Numerical simulations of gas production from Class 1 hydrate and Class 3 hydrate in the Nile Delta of the Mediterranean Sea. Journal of Natural Gas Science and Engineering, 2018, 52, 248-266.	2.1	45
22	Does the Mediterranean Sea have potential for producing gas hydrates?. Journal of Natural Gas Science and Engineering, 2018, 55, 113-134.	2.1	29
23	Investigation of gas seepages in Thessaloniki mud volcano in the Mediterranean Sea. Journal of Petroleum Science and Engineering, 2018, 168, 81-97.	2.1	18
24	The Gas Hydrate Potential of the Eastern Mediterranean Basin. Bulletin of the Mineral Research and Exploration, 0, , 1-10.	0.5	6
25	THE ROLE OF NATURAL GAS HYDRATE DURING NATURAL GAS TRANSPORTATION. ×mer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 0, , .	0.2	7