
Marie Lipoldova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3401531/publications.pdf Version: 2024-02-01

MADIE LIDOLDOVA

#	Article	IF	CITATIONS
1	Role of interferon-induced GTPases in leishmaniasis. PLoS Neglected Tropical Diseases, 2022, 16, e0010093.	3.0	1
2	Role of host genetics and cytokines in Leishmania infection. Cytokine, 2021, 147, 155244.	3.2	9
3	Gene-Specific Sex Effects on Susceptibility to Infectious Diseases. Frontiers in Immunology, 2021, 12, 712688.	4.8	11
4	Genetic Influence on Frequencies of Myeloid-Derived Cell Subpopulations in Mouse. Frontiers in Immunology, 2021, 12, 760881.	4.8	3
5	How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunology, Immunotherapy, 2019, 68, 631-644.	4.2	110
6	Novel Loci Controlling Parasite Load in Organs of Mice Infected With Leishmania major, Their Interactions and Sex Influence. Frontiers in Immunology, 2019, 10, 1083.	4.8	5
7	Myeloidâ€Đerived Suppressor Cells in Hematologic Diseases: Promising Biomarkers and Treatment Targets. HemaSphere, 2019, 3, e168.	2.7	41
8	Mannose Receptor and the Mystery of Nonhealing Leishmania major Infection. Trends in Parasitology, 2018, 34, 354-356.	3.3	2
9	A novel locus on mouse chromosome 7 that influences survival after infection with tick-borne encephalitis virus. BMC Neuroscience, 2018, 19, 39.	1.9	14
10	Genetic Regulation of Guanylate-Binding Proteins 2b and 5 during Leishmaniasis in Mice. Frontiers in Immunology, 2018, 9, 130.	4.8	15
11	Calcium Ionophore, Calcimycin, Kills Leishmania Promastigotes by Activating Parasite Nitric Oxide Synthase. BioMed Research International, 2017, 2017, 1-6.	1.9	7
12	Gene-specific sex effects on eosinophil infiltration in leishmaniasis. Biology of Sex Differences, 2016, 7, 59.	4.1	10
13	Giardia and Vilém Dušan Lambl. PLoS Neglected Tropical Diseases, 2014, 8, e2686.	3.0	7
14	Genetic regulation of immunoglobulin <scp>E</scp> level in different pathological states: integration of mouse and human genetics. Biological Reviews, 2014, 89, 375-405.	10.4	5
15	Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. Journal of Neuroinflammation, 2013, 10, 77.	7.2	74
16	Mapping the Genes for Susceptibility and Response to Leishmania tropica in Mouse. PLoS Neglected Tropical Diseases, 2013, 7, e2282.	3.0	15
17	Genetics of Host Response to Leishmania tropica in Mice – Different Control of Skin Pathology, Chemokine Reaction, and Invasion into Spleen and Liver. PLoS Neglected Tropical Diseases, 2012, 6, e1667.	3.0	27
18	Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. Journal of Microbiological Methods, 2011, 87, 273-277.	1.6	25

Marie Lipoldova

#	Article	IF	CITATIONS
19	The protective effect against Leishmania infection conferred by sand fly bites is limited to short-term exposure. International Journal for Parasitology, 2011, 41, 481-485.	3.1	35
20	Genetic Control of Resistance to Trypanosoma brucei brucei Infection in Mice. PLoS Neglected Tropical Diseases, 2011, 5, e1173.	3.0	19
21	Loci controlling lymphocyte production of interferon Î ³ after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility. Cancer Immunology, Immunotherapy, 2010, 59, 203-213.	4.2	10
22	Leishmania parasite detection and quantification using PCR-ELISA. Nature Protocols, 2010, 5, 1074-1080.	12.0	30
23	Mouse to human comparative genetics reveals a novel immunoglobulin E-controlling locus on Hsa8q12. Immunogenetics, 2009, 61, 15-25.	2.4	9
24	Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection. Immunogenetics, 2009, 61, 619-633.	2.4	26
25	Specificity of antiâ€saliva immune response in mice repeatedly bitten by <i>Phlebotomus sergenti</i> . Parasite Immunology, 2009, 31, 766-770.	1.5	20
26	Chromosome 12q24.3 controls sensitization to cat allergen in patients with asthma from Siberia, Russia. Immunology Letters, 2009, 125, 1-6.	2.5	2
27	Relationship between total and specific IgE in patients with asthma from Siberia. Journal of Allergy and Clinical Immunology, 2008, 121, 781.	2.9	6
28	Cat is a major allergen in patients with asthma from west Siberia, Russia. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 509-510.	5.7	12
29	Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nature Reviews Genetics, 2006, 7, 294-305.	16.3	134
30	Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes and Immunity, 2006, 7, 220-233.	4.1	29
31	Mouse model for analysis of non-MHC genes that influence allogeneic response: recombinant congenic strains of OcB/Dem series that carry identical H2 locus. Open Life Sciences, 2006, 1, 16-28.	1.4	1
32	Modulation of murine cellular immune response and cytokine production by salivary gland lysate of three sand fly species. Parasite Immunology, 2005, 27, 469-473.	1.5	26
33	Novel loci controlling lymphocyte proliferative response to cytokines and their clustering with loci controlling autoimmune reactions, macrophage function and lung tumor susceptibility. International Journal of Cancer, 2005, 114, 394-399.	5.1	12
34	Different Genetic Control of Cutaneous and Visceral Disease after Leishmania major Infection in Mice. Infection and Immunity, 2003, 71, 2041-2046.	2.2	35
35	Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics, 2002, 54, 174-183.	2.4	28
36	Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice. Genes and Immunity, 2002, 3, 187-195.	4.1	26

Marie Lipoldova

#	Article	IF	CITATIONS
37	Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes and Immunity, 2000, 1, 200-206.	4.1	75
38	A new type of genetic regulation of allogeneic response. A novel locus on mouse chromosome 4, Alan2 controls MLC reactivity to three different alloantigens: C57BL/10, BALB/c and CBA. Genes and Immunity, 2000, 1, 483-487.	4.1	7
39	A novel alloreactivity-controlling locus, Alan1 , mapped to mouse Chromosome 17. Immunogenetics, 2000, 51, 755-757.	2.4	3
40	T-cell proliferative response is controlled by loci Tria4 and Tria5 on mouse Chromosomes 7 and 9. Mammalian Genome, 1999, 10, 670-674.	2.2	9
41	The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by loci Cypr2 and Cypr3 , respectively. Immunogenetics, 1999, 49, 134-141.	2.4	26
42	T-cell proliferative response is controlled by locus Tria3 on mouse chromosome 17. Immunogenetics, 1999, 49, 235-237.	2.4	4
43	IL-2-Induced Proliferative Response Is Controlled by LociCinda1andCinda2on Mouse Chromosomes 11 and 12: A Distinct Control of the Response Induced by Different IL-2 Concentrations. Genomics, 1997, 42, 11-15.	2.9	22
44	Resistance to Leishmania major in Mice. Science, 1996, 274, 1392-0.	12.6	215
45	Identical genetic control of MLC reactivity to different MHC incompatibilities, independent of production of and response to IL-2. Immunogenetics, 1996, 44, 27-35.	2.4	13
46	Genetic control of T-cell proliferative response in mice linked to chromosomes 11 and 15. Immunogenetics, 1996, 44, 475-477.	2.4	10
47	Identical genetic control of MLC reactivity to different MHC incompatibilities, independent of production of and response to IL-2. Immunogenetics, 1996, 44, 27-35.	2.4	4
48	Genetic control of T-cell proliferative response in mice linked to chromosomes 11 and 15. Immunogenetics, 1996, 44, 475-477.	2.4	0
49	Separation of multiple genes controlling the T-cell proliferative response to IL-2 and anti-CD3 using recombinant congenic strains. Immunogenetics, 1995, 41, 301-311.	2.4	30
50	Expression of Thy-1 Antigen in Germ-Free and Conventional Piglets. Advances in Experimental Medicine and Biology, 1995, 371A, 453-457.	1.6	1
51	Interleukin-1 and Interferon-α Augment Interleukin-2 (IL-2) Production by Distinct Mechanisms at the IL-2 mRNA Level. Cellular Immunology, 1994, 157, 549-555.	3.0	6
52	Expression of the Gene for Tumor Necrosis Factor-β but Not for Tumor Necrosis Factor-α Is Impaired in Tumor-Bearing Mice. Cellular Immunology, 1993, 152, 234-239.	3.0	1
53	Analysis of T cell repertoire and function in mice transgenic for the human $\hat{VI^2}$ 3 TCR. International Immunology, 1993, 5, 1541-1549.	4.0	6
54	Antigen recognition and IL-2 receptor gene expression as evidence against clonal deletion in mice with neonatally induced transplantation tolerance. Cellular Immunology, 1992, 140, 257-261.	3.0	0

MARIE LIPOLDOVA

#	Article	IF	CITATIONS
55	Exogenous interleukin-2 abrogates differences in the proliferative responses to T cell mitogens among inbred strains of mice. Cellular Immunology, 1992, 142, 177-185.	3.0	11
56	Immunological nonreactivity of newborn mice: Immaturity of T cells and selective action of neonatal suppressor cells. Cellular Immunology, 1991, 137, 216-223.	3.0	14
57	Interleukinâ€2 activates the γâ€interferon gene in newborn mice. Immunology and Cell Biology, 1991, 69, 423-426.	2.3	1
58	Interleukin-1 production by immunologically hyporeactive tumour-bearing mice. British Journal of Cancer, 1990, 61, 667-670.	6.4	6
59	The human leucocyte surface antigen CD53 is a protein structurally similar to the CD37 and MRC OX-44 antigens. Immunogenetics, 1990, 32, 281-285.	2.4	71
60	Low responsiveness of spleen cells from tumour-bearing mice to recombinant interleukin-1 and interleukin-2. impaired expression of interleukin-2 receptors. International Journal of Cancer, 1990, 45, 798-800.	5.1	2
61	T-cell receptor Vβ5 usage defines reactivity to a human T-cell receptor monoclonal antibody. Immunogenetics, 1989, 30, 162-168.	2.4	6
62	Analysis of T-cell receptor usage in activated T-cell clones from Hashimoto's thyroiditis and Graves' disease. Journal of Autoimmunity, 1989, 2, 1-13.	6.5	27
63	Molecular cloning and identification of cDNA recombinants of the prochymosin gene of the calf. Acta Biotechnologica, 1986, 6, 9-9.	0.9	0
64	Genotyping of short tandem repeats (STRs) markers with 6 bp or higher length difference using PCR and high resolution agarose electrophoresis. Protocol Exchange, 0, , .	0.3	1