Claude G Wasterlain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3401481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trafficking of GABAA Receptors, Loss of Inhibition, and a Mechanism for Pharmacoresistance in Status Epilepticus. Journal of Neuroscience, 2005, 25, 7724-7733.	3.6	479
2	Status epilepticus: pathophysiology and management in adults. Lancet Neurology, The, 2006, 5, 246-256.	10.2	469
3	Pathophysiological Mechanisms of Brain Damage from Status Epilepticus. Epilepsia, 1993, 34, S37-53.	5.1	425
4	Patterns of Status Epilepticus-Induced Neuronal Injury during Development and Long-Term Consequences. Journal of Neuroscience, 1998, 18, 8382-8393.	3.6	389
5	Time-dependent decrease in the effectiveness of antiepileptic drugs during the course of self-sustaining status epilepticus. Brain Research, 1998, 814, 179-185.	2.2	227
6	Modulation of Hippocampal Excitability and Seizures by Galanin. Journal of Neuroscience, 2000, 20, 6276-6281.	3.6	206
7	Apoptosis in a Neonatal Rat Model of Cerebral Hypoxia-Ischemia. Stroke, 1998, 29, 2622-2630.	2.0	177
8	18FDG positron emission computed tomography in a study of aphasia. Annals of Neurology, 1981, 10, 173-183.	5.3	172
9	Galanin Modulation of Seizures and Seizure Modulation of Hippocampal Galanin in Animal Models of Status Epilepticus. Journal of Neuroscience, 1998, 18, 10070-10077.	3.6	172
10	Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiology of Disease, 2013, 54, 225-238.	4.4	169
11	N-methyl-d-asparate receptor antagonists abolish the maintenance phase of self-sustaining status epilepticus in rat. Neuroscience Letters, 1999, 265, 187-190.	2.1	149
12	Epileptogenesis after status epilepticus reflects age- and model-dependent plasticity. Annals of Neurology, 2000, 48, 580-589.	5.3	130
13	Recurrent Seizures in the Developing Brain Are Harmful. Epilepsia, 1997, 38, 728-734.	5.1	121
14	Posthypoxic glucose supplement reduces hypoxicâ€ischemic brain damage in the neonatal rat. Annals of Neurology, 1990, 28, 122-128.	5.3	114
15	Mechanistic and pharmacologic aspects of status epilepticus and its treatment with new antiepileptic drugs. Epilepsia, 2008, 49, 63-73.	5.1	110
16	Self-sustaining status epilepticus after brief electrical stimulation of the perforant path. Brain Research, 1998, 801, 251-253.	2.2	104
17	Anticonvulsant effects of levetiracetam and levetiracetam–diazepam combinations in experimental status epilepticus. Epilepsy Research, 2004, 58, 167-174.	1.6	100
18	Serum neuron-specific enolase is a marker for neuronal damage following status epilepticus in the rat. Epilepsy Research, 1997, 28, 129-136.	1.6	97

CLAUDE G WASTERLAIN

#	Article	IF	CITATIONS
19	Mortality and Morbidity from Serial Seizures Epilepsia, 1974, 15, 155-176.	5.1	93
20	Granule Cell Neurogenesis After Status Epilepticus in the Immature Rat Brain. Epilepsia, 2000, 41, S53-S56.	5.1	90
21	Treatment of Experimental Status Epilepticus in Immature Rats: Dissociation Between Anticonvulsant and Antiepileptogenic Effects. Pediatric Research, 2006, 59, 237-243.	2.3	81
22	Hypoxic neuronal necrosis: Protein synthesis-independent activation of a cell death program. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2825-2830.	7.1	73
23	Seizure-induced neuronal death in the immature brain. Progress in Brain Research, 2002, 135, 335-353.	1.4	63
24	Rational polytherapy in the treatment of acute seizures and status epilepticus. Epilepsia, 2011, 52, 70-71.	5.1	58
25	Induction of brain derived neurotrophic factor mRNA by seizures in neonatal and juvenile rat brain. Molecular Brain Research, 1997, 44, 219-228.	2.3	55
26	Midazolam–ketamine dual therapy stops cholinergic status epilepticus and reduces Morris water maze deficits. Epilepsia, 2016, 57, 1406-1415.	5.1	55
27	Benzodiazepineâ€refractory status epilepticus: pathophysiology and principles of treatment. Annals of the New York Academy of Sciences, 2016, 1378, 166-173.	3.8	54
28	Molecular basis of selfâ€sustaining seizures and pharmacoresistance during status epilepticus: The receptor trafficking hypothesis revisited. Epilepsia, 2009, 50, 16-18.	5.1	52
29	Status Epilepticus in Immature Rats. Archives of Neurology, 1976, 33, 821.	4.5	51
30	Phenobarbital and midazolam increase neonatal seizureâ€associated neuronal injury. Annals of Neurology, 2017, 82, 115-120.	5.3	51
31	Self-Sustaining Status Epilepticus: A Condition Maintained by Potentiation of Glutamate Receptors and by Plastic Changes in Substance P and Other Peptide Neuromodulators. Epilepsia, 2000, 41, S134-S143.	5.1	50
32	Trafficking of <scp>NMDA</scp> receptors during status epilepticus: Therapeutic implications. Epilepsia, 2013, 54, 78-80.	5.1	50
33	Epileptogenesis After Self-Sustaining Status Epilepticus. Epilepsia, 2002, 43, 74-80.	5.1	49
34	Rat Brain Protein Synthesis Declines During Postdevelopmental Aging. Journal of Neurochemistry, 1980, 35, 746-749.	3.9	48
35	Vulnerability of postnatal hippocampal neurons to seizures varies regionally with their maturational stage. Neurobiology of Disease, 2010, 37, 394-402.	4.4	48
36	Short-Term Plasticity of Hippocampal Neuropeptides and Neuronal Circuitry in Experimental Status Epilepticus. Epilepsia, 2002, 43, 20-29.	5.1	47

CLAUDE G WASTERLAIN

#	Article	IF	CITATIONS
37	Programmed Neuronal Necrosis and Status Epilepticus. Epilepsia, 2005, 46, 43-48.	5.1	45
38	Electroconvulsive seizures in the immature rat adversely affect myelin accumulation. Experimental Neurology, 1982, 78, 616-628.	4.1	42
39	Novel rat cardiac arrest model of posthypoxic myoclonus. Movement Disorders, 2004, 9, 201-206.	3.9	42
40	Simultaneous triple therapy for the treatment of status epilepticus. Neurobiology of Disease, 2017, 104, 41-49.	4.4	38
41	Status Epilepticus Triggers Caspase-3 Activation and Necrosis in the Immature Rat Brain. Epilepsia, 2007, 48, 1203-1206.	5.1	37
42	Treatment of experimental status epilepticus with synergistic drug combinations. Epilepsia, 2017, 58, e49-e53.	5.1	36
43	Regulation of the First Step of the Initiation of Brain Protein Synthesis by Guanosine Diphosphate. Journal of Neurochemistry, 1980, 34, 1639-1647.	3.9	35
44	GABA Synapses and the Rapid Loss of Inhibition to Dentate Gyrus Granule Cells after Brief Perforant-Path Stimulation. Epilepsia, 2005, 46, 142-147.	5.1	35
45	GABA metabolism in the substantia nigra, cortex, and hippocampus during status epilepticus. Neurochemical Research, 1993, 18, 527-532.	3.3	33
46	Synaptic Proteins After Electroconvulsive Seizures in Immature Rats. Journal of Neurochemistry, 1980, 35, 1235-1237.	3.9	32
47	The acute and chronic effects of the novel anticonvulsant lacosamide in an experimental model of status epilepticus. Epilepsy Research, 2011, 94, 10-17.	1.6	32
48	Lithium-pilocarpine status epilepticus in the immature rabbit. Developmental Brain Research, 1997, 100, 1-4.	1.7	31
49	Self-sustaining status epilepticus after a brief electrical stimulation of the perforant path: a 2-deoxyglucose study. Brain Research, 1999, 838, 110-118.	2.2	31
50	Piribedil, a dopamine agonist, in Parkinson's disease. Clinical Pharmacology and Therapeutics, 1974, 16, 1077-1082.	4.7	30
51	Acute and longâ€ŧerm effects of brivaracetam and brivaracetam–diazepam combinations in an experimental model of status epilepticus. Epilepsia, 2017, 58, 1199-1207.	5.1	30
52	Rational polytherapy in the treatment of cholinergic seizures. Neurobiology of Disease, 2020, 133, 104537.	4.4	30
53	Calmodulin Kinase II in Pure Cultured Astrocytes. Journal of Neurochemistry, 1988, 50, 45-49.	3.9	29
54	Selective protection of neuropeptide containing dentate hilar interneurons by non-NMDA receptor blockade in an animal model of status epilepticus. Brain Research, 1994, 644, 19-24.	2.2	28

CLAUDE G WASTERLAIN

#	Article	IF	CITATIONS
55	GalR2-positive allosteric modulator exhibits anticonvulsant effects in animal models. Proceedings of the United States of America, 2010, 107, 15229-15234.	7.1	28
56	Widespread neuronal injury in a model of cholinergic status epilepticus in postnatal day 7 rat pups. Epilepsy Research, 2016, 120, 47-54.	1.6	28
57	Neonatal Seizures in Monkeys and Rabbits: Brain Glucose Depletion in the Face of Normoglycemia, Prevention by Glucose Loads. Pediatric Research, 1985, 19, 992-995.	2.3	26
58	Brain Energy Metabolism During Experimental Neonatal Seizures. Neurochemical Research, 2010, 35, 2193-2198.	3.3	26
59	Effects of Neonatal Seizures on Ontogeny of Reflexes and Behavior. European Neurology, 1977, 15, 9-19.	1.4	25
60	Early polytherapy for benzodiazepine-refractory status epilepticus. Epilepsy and Behavior, 2019, 101, 106367.	1.7	25
61	Epileptogenesis During Development: Injury, Circuit Recruitment, and Plasticity. Epilepsia, 2002, 43, 47-53.	5.1	23
62	Effect of Altered Blood Plasma Osmolalities on Regional Brain Amino Acid Concentrations and Focal Seizure Susceptibility in the Rat. Journal of Neurochemistry, 1986, 47, 617-624.	3.9	22
63	Deep hypothermia for the treatment of refractory status epilepticus. Epilepsy and Behavior, 2015, 49, 313-317.	1.7	22
64	Treatment of acetylcholinesterase inhibitor-induced seizures with polytherapy targeting GABA and glutamate receptors. Neuropharmacology, 2021, 185, 108444.	4.1	21
65	Neuroprotective effects of deep hypothermia in refractory status epilepticus. Annals of Clinical and Translational Neurology, 2015, 2, 1105-1115.	3.7	18
66	Does Anoxemia Play a Role in the Effects of Neonatal Seizures on Brain Growth?. European Neurology, 1979, 18, 222-229.	1.4	17
67	Ontogeny of Self-Sustaining Status epilepticus. Developmental Neuroscience, 1999, 21, 345-351.	2.0	17
68	Urethane anesthesia produces selective damage in the piriform cortex of the developing brain. Developmental Brain Research, 2001, 130, 167-171.	1.7	16
69	Selective focal inhibition of brain protein synthesis during generalized bicuculline seizures in newborn marmoset monkeys. Brain Research, 1984, 308, 109-121.	2.2	15
70	Neuropathological changes during generalized seizures in newborn monkeys. Epilepsy Research, 1992, 12, 243-251.	1.6	14
71	Dataset of EEG power integral, spontaneous recurrent seizure and behavioral responses following combination drug therapy in soman-exposed rats. Data in Brief, 2019, 27, 104629.	1.0	12
72	Blockers of NMDA receptors restore paired-pulse inhibition in the rat dentate gyrus lesioned by perforant path stimulation. Neuroscience Letters, 1997, 234, 135-138.	2.1	11

#	Article	IF	CITATIONS
73	Epileptogenesis in the developing brain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 111, 427-439.	1.8	11
74	Combination of antiseizure medications phenobarbital, ketamine, and midazolam reduces somanâ€induced epileptogenesis and brain pathology in rats. Epilepsia Open, 2021, 6, 757-769.	2.4	11
75	Effects of neonatal seizures or anoxia on cerebellar mitotic activity in the rat. Experimental Neurology, 1980, 67, 573-580.	4.1	9
76	Treatment of early life status epilepticus: What can we learn from animal models?. Epilepsia Open, 2018, 3, 169-179.	2.4	8
77	Partial protection of hippocampal neurons by MK-801 during perforant path stimulation in the immature brain. Brain Research, 1997, 751, 96-101.	2.2	6
78	Invulnerability of the Immature Brain to Seizures: Do Dogmas Have Nine Lives?. Epilepsy Currents, 2006, 6, 59-61.	0.8	5
79	Programmed Necrosis after Status Epilepticus. , 2012, , 377-386.		5
80	Cyclic Nucleotide Response of the Hippocampal Formation to Septal Stimulation in Naive and Kindled Rats. Journal of Neurochemistry, 1986, 47, 185-190.	3.9	3
81	Programmed necrosis after status epilepticus. Epilepsia, 2010, 51, 36-36.	5.1	2
82	Status Epilepticus - Lessons and Challenges from Animal Models. , 2017, , 3-17.		1