Chenyang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3401334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585, 53-57.	27.8	384
2	Suppressing thermal quenching via defect passivation for efficient quasi-2D perovskite light-emitting diodes. Light: Science and Applications, 2022, 11, 69.	16.6	60
3	Perovskite Light-Emitting Diodes. CCS Chemistry, 2020, 2, 859-869.	7.8	52
4	Domain Controlling by Compound Additive toward Highly Efficient Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2103890.	14.9	40
5	Achieving Deep-Blue Thermally Activated Delayed Fluorescence in Nondoped Organic Light-Emitting Diodes through a Spiro-Blocking Strategy. ACS Omega, 2019, 4, 1861-1867.	3.5	36
6	Extremely Low Roll-Off and High Efficiency Achieved by Strategic Exciton Management in Organic Light-Emitting Diodes with Simple Ultrathin Emitting Layer Structure. ACS Applied Materials & Interfaces, 2018, 10, 8148-8154.	8.0	29
7	Using Simple Fusedâ€Ring Thieno[2,3â€≺i>d]pyrimidine to Construct Orange/Red Ir(III) Complexes: Highâ€Performance Red Organic Lightâ€Emitting Diodes with EQEs up to Nearly 28%. Advanced Optical Materials, 2018, 6, 1800108.	7.3	28
8	High-performance hybrid white organic light-emitting diodes with simple emitting structures and low efficiency roll-off based on blue thermally activated delayed fluorescence emitters with bipolar transport characteristics. Journal of Materials Chemistry C, 2018, 6, 9510-9516.	5.5	27
9	High efficiency phosphorescent white organic light-emitting diodes with low efficiency roll-off achieved by strategic exciton management based on simple ultrathin emitting layer structures. Journal of Materials Chemistry C, 2017, 5, 12833-12838.	5.5	23
10	Isomeric Nâ€Linked Benzoimidazole Containing New Electron Acceptors for Exciplex Forming Hosts in Highly Efficient Blue Phosphorescent OLEDs. Advanced Optical Materials, 2017, 5, 1700036.	7.3	21
11	Controlling excimer formation in indolo[3,2,1- <i>jk</i>]carbazole/9 <i>H</i> -carbazole based host materials for RGB PhOLEDs. Journal of Materials Chemistry C, 2018, 6, 9914-9924.	5.5	18
12	Quasi-2D lead halide perovskite gain materials toward electrical pumping laser. Nanophotonics, 2021, 10, 2167-2180.	6.0	17
13	High efficiency and low roll-off hybrid white organic light emitting diodes by strategically introducing multi-ultrathin phosphorescent layers in blue exciplex emitter. Journal of Applied Physics, 2019, 125, .	2.5	12
14	Thieno[3,4-c]pyrrole-4,6-dione as novel building block for host materials for red PhOLEDs. Journal of Materials Chemistry C, 2017, 5, 1997-2004.	5.5	10
15	Functional organic click-materials: application in phosphorescent organic light emitting diodes. RSC Advances, 2017, 7, 12150-12160.	3.6	9
16	Engineering of Annealing and Surface Passivation toward Efficient and Stable Quasi-2D Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 11645-11651.	4.6	9
17	Facile tailoring of the electrical transport in representative hole transport materials by molecular doping. RSC Advances, 2018, 8, 26230-26236.	3.6	3
18	Phosphonate/Phosphine Oxide Dyad Additive for Efficient Perovskite Lightâ€Emitting Diodes. Angewandte Chemie, 2022, 134, .	2.0	3