Marten Scheffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3401074/publications.pdf Version: 2024-02-01

		2962	1410
231	67,245	96	227
papers	citations	h-index	g-index
234	234	234	59144
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Resilience of phytoplankton dynamics to trophic cascades and nutrient enrichment. Limnology and Oceanography, 2022, 67, .	1.6	6
2	A regional PECS node built from place-based social-ecological sustainability research in Latin America and the Caribbean. Ecosystems and People, 2022, 18, 1-14.	1.3	1
3	Large-scale decrease in the social salience of climate change during the COVID-19 pandemic. PLoS ONE, 2022, 17, e0256082.	1.1	5
4	Feedback between climate change and eutrophication: revisiting the allied attack concept and how to strike back. Inland Waters, 2022, 12, 187-204.	1.1	41
5	Resilience integrates concepts in aging research. IScience, 2022, 25, 104199.	1.9	9
6	Reply to Sun: Making sense of language change. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	0
7	Belief traps: Tackling the inertia of harmful beliefs. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
8	Cloud Patterns in the Trades Have Four Interpretable Dimensions. Geophysical Research Letters, 2021, 48, e2020GL091001.	1.5	13
9	No warning for slow transitions. Journal of the Royal Society Interface, 2021, 18, 20200935.	1.5	10
10	Historical effects of shocks on inequality: the great leveler revisited. Humanities and Social Sciences Communications, 2021, 8, .	1.3	8
11	Our future in the Anthropocene biosphere. Ambio, 2021, 50, 834-869.	2.8	275
12	Survival of the Systems. Trends in Ecology and Evolution, 2021, 36, 333-344.	4.2	25
13	Exit time as a measure of ecological resilience. Science, 2021, 372, .	6.0	55
14	WTO must ban harmful fisheries subsidies. Science, 2021, 374, 544-544.	6.0	45
15	Foreseeing the future of mutualistic communities beyond collapse. Ecology Letters, 2020, 23, 2-15.	3.0	37
16	Depression alters the circadian pattern of online activity. Scientific Reports, 2020, 10, 17272.	1.6	24
17	Corridors of Clarity: Four Principles to Overcome Uncertainty Paralysis in the Anthropocene. BioScience, 2020, 70, 1139-1144.	2.2	14
18	Neutral competition boosts cycles and chaos in simulated food webs. Royal Society Open Science, 2020, 7, 191532.	1.1	3

#	Article	IF	CITATIONS
19	Earlyâ€Warning Signals for Marine Anoxic Events. Geophysical Research Letters, 2020, 47, e2020GL089183.	1.5	22
20	Future of the human climate niche. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11350-11355.	3.3	400
21	Social dimensions of fertility behavior and consumption patterns in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6300-6307.	3.3	33
22	An invitation for more research on transnational corporations and the biosphere. Nature Ecology and Evolution, 2020, 4, 494-494.	3.4	9
23	Stochastic dynamics of Cyanobacteria in longâ€ŧerm highâ€frequency observations of a eutrophic lake. Limnology and Oceanography Letters, 2020, 5, 331-336.	1.6	22
24	Climbing Escher's stairs: A way to approximate stability landscapes in multidimensional systems. PLoS Computational Biology, 2020, 16, e1007788.	1.5	21
25	Edge Detection Reveals Abrupt and Extreme Climate Events. Journal of Climate, 2020, 33, 6399-6421.	1.2	11
26	Dynamical Indicators of Resilience in Postural Balance Time Series Are Related to Successful Aging in High-Functioning Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1119-1126.	1.7	29
27	Resilience in Clinical Care: Getting a Grip on the Recovery Potential of Older Adults. Journal of the American Geriatrics Society, 2019, 67, 2650-2657.	1.3	64
28	Finding the direction of lowest resilience in multivariate complex systems. Journal of the Royal Society Interface, 2019, 16, 20190629.	1.5	14
29	Superorganisms or loose collections of species? A unifying theory of community patterns along environmental gradients. Ecology Letters, 2019, 22, 1243-1252.	3.0	52
30	Livestock Herbivory Shapes Fire Regimes and Vegetation Structure Across the Global Tropics. Ecosystems, 2019, 22, 1457-1465.	1.6	17
31	Technology driven inequality leads to poverty and resource depletion. Ecological Economics, 2019, 160, 215-226.	2.9	35
32	Ecosystem tipping points in an evolving world. Nature Ecology and Evolution, 2019, 3, 355-362.	3.4	203
33	Transnational corporations and the challenge of biosphere stewardship. Nature Ecology and Evolution, 2019, 3, 1396-1403.	3.4	194
34	The minute-scale dynamics of online emotions reveal the effects of affect labeling. Nature Human Behaviour, 2019, 3, 92-100.	6.2	43
35	A global climate niche for giant trees. Global Change Biology, 2018, 24, 2875-2883.	4.2	15
36	Toward a unifying theory of biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 639-641.	3.3	56

#	Article	IF	CITATIONS
37	Climate models predict increasing temperature variability in poor countries. Science Advances, 2018, 4, eaar5809.	4.7	287
38	Slow Recovery from Local Disturbances as an Indicator for Loss of Ecosystem Resilience. Ecosystems, 2018, 21, 141-152.	1.6	58
39	Remotely sensed canopy height reveals three pantropical ecosystem states: reply. Ecology, 2018, 99, 235-237.	1.5	2
40	Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8252-8259.	3.3	1,832
41	Seeing a global web of connected systems. Science, 2018, 362, 1357-1357.	6.0	10
42	Quantifying resilience of humans and other animals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11883-11890.	3.3	204
43	Forest-rainfall cascades buffer against drought across the Amazon. Nature Climate Change, 2018, 8, 539-543.	8.1	191
44	Climate reddening increases the chance of critical transitions. Nature Climate Change, 2018, 8, 478-484.	8.1	55
45	Resilience of tropical tree cover: The roles of climate, fire, and herbivory. Clobal Change Biology, 2018, 24, 5096-5109.	4.2	43
46	Fire forbids fifty-fifty forest. PLoS ONE, 2018, 13, e0191027.	1.1	42
47	Creating a safe operating space for wetlands in a changing climate. Frontiers in Ecology and the Environment, 2017, 15, 99-107.	1.9	125
48	Floodplains as an Achilles' heel of Amazonian forest resilience. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4442-4446.	3.3	96
49	To Tree or Not to Tree: Cultural Views from Ancient Romans to Modern Ecologists. Ecosystems, 2017, 20, 62-68.	1.6	7
50	Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics. Environmental Science & Technology, 2017, 51, 7963-7971.	4.6	566
51	Coral reefs in the Anthropocene. Nature, 2017, 546, 82-90.	13.7	1,329
52	Risks of Plastic Debris: Unravelling Fact, Opinion, Perception, and Belief. Environmental Science & Technology, 2017, 51, 11513-11519.	4.6	250
53	Reply to Schöngart et al.: Forest resilience variation across Amazonian floodplains. Proceedings of the United States of America, 2017, 114, E8552-E8554.	3.3	0
54	Observed trends in the magnitude and persistence of monthly temperature variability. Scientific Reports, 2017, 7, 5940.	1.6	44

#	Article	IF	CITATIONS
55	Inequality in nature and society. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13154-13157.	3.3	76
56	Rare, Intense, Big fires dominate the global tropics under drier conditions. Scientific Reports, 2017, 7, 14374.	1.6	30
57	Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nature Communications, 2017, 8, 15811.	5.8	86
58	Dynamical Resilience Indicators in Time Series of Self-Rated Health Correspond to Frailty Levels in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 991-996.	1.7	62
59	Statistical indicators of Arctic sea-ice stability – prospects and limitations. Cryosphere, 2016, 10, 1631-1645.	1.5	14
60	Slowing Down of Recovery as Generic Risk Marker for Acute Severity Transitions in Chronic Diseases. Critical Care Medicine, 2016, 44, 601-606.	0.4	73
61	When can positive interactions cause alternative stable states in ecosystems?. Functional Ecology, 2016, 30, 88-97.	1.7	139
62	Financial complexity: Accounting for fraud—Response. Science, 2016, 352, 302-302.	6.0	3
63	Multiple feedbacks and the prevalence of alternate stable states on coral reefs. Coral Reefs, 2016, 35, 857-865.	0.9	74
64	Remotely sensed resilience of tropical forests. Nature Climate Change, 2016, 6, 1028-1031.	8.1	157
65	Social norms as solutions. Science, 2016, 354, 42-43.	6.0	476
66	Anticipating societal collapse; Hints from the Stone Age. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10733-10735.	3.3	28
67	What Do You Mean, â€~Tipping Point'?. Trends in Ecology and Evolution, 2016, 31, 902-904.	4.2	159
68	Remotely sensed canopy height reveals three pantropical ecosystem states. Ecology, 2016, 97, 2518-2521.	1.5	47
69	Complexity theory and financial regulation. Science, 2016, 351, 818-819.	6.0	361
70	Why are forests so scarce in subtropical South America? The shaping roles of climate, fire and livestock. Forest Ecology and Management, 2016, 363, 212-217.	1.4	35
71	Major Depression as a Complex Dynamic System. PLoS ONE, 2016, 11, e0167490.	1.1	271
72	Synchronous failure: the emerging causal architecture of global crisis. Ecology and Society, 2015, 20, .	1.0	144

#	Article	IF	CITATIONS
73	Resilience of Alternative States in Spatially Extended Ecosystems. PLoS ONE, 2015, 10, e0116859.	1.1	55
74	How to Break the Cycle of Low Workforce Diversity: A Model for Change. PLoS ONE, 2015, 10, e0133208.	1.1	30
75	The Evolution of Functionally Redundant Species; Evidence from Beetles. PLoS ONE, 2015, 10, e0137974.	1.1	34
76	A Changing Number of Alternative States in the Boreal Biome: Reproducibility Risks of Replacing Remote Sensing Products. PLoS ONE, 2015, 10, e0143014.	1.1	13
77	Understanding migraine using dynamic network biomarkers. Cephalalgia, 2015, 35, 627-630.	1.8	27
78	The mystery of missing trubs revisited: a response to McGlone et al. and Qian and Ricklefs. Trends in Ecology and Evolution, 2015, 30, 7-8.	4.2	6
79	Temperate forest and open landscapes are distinct alternative states as reflected in canopy height and tree cover. Trends in Ecology and Evolution, 2015, 30, 501-502.	4.2	8
80	What if solar energy becomes really cheap? A thought experiment on environmental problem shifting. Current Opinion in Environmental Sustainability, 2015, 14, 170-179.	3.1	62
81	Hysteresis in an experimental phytoplankton population. Oikos, 2015, 124, 1617-1623.	1.2	13
82	Causal feedbacks in climate change. Nature Climate Change, 2015, 5, 445-448.	8.1	115
83	Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5777-86.	3.3	182
84	Generic Indicators of Ecological Resilience: Inferring the Chance of a Critical Transition. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 145-167.	3.8	339
85	Allowing variance may enlarge the safe operating space for exploited ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14384-14389.	3.3	104
86	Local Facilitation May Cause Tipping Points on a Landscape Level Preceded by Early-Warning Indicators. American Naturalist, 2015, 186, E81-E90.	1.0	43
87	Resilience indicators: prospects and limitations for early warnings of regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130263.	1.8	349
88	Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns. PLoS ONE, 2014, 9, e92097.	1.1	286
89	Tipping elements in the human intestinal ecosystem. Nature Communications, 2014, 5, 4344.	5.8	217
90	Critical slowing down as early warning for the onset and termination of depression. Proceedings of the United States of America, 2014, 111, 87-92.	3.3	504

#	Article	IF	CITATIONS
91	The sudden collapse of pollinator communities. Ecology Letters, 2014, 17, 350-359.	3.0	213
92	Tipping points in tropical tree cover: linking theory to data. Global Change Biology, 2014, 20, 1016-1021.	4.2	80
93	Nile perch (Lates niloticus, L.) and cichlids (Haplochromis spp.) in Lake Victoria: could prey mortality promote invasion of its predator?. Theoretical Ecology, 2014, 7, 253-261.	0.4	6
94	Reply to Bos and De Jonge: Between-subject data do provide first empirical support for critical slowing down in depression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E879.	3.3	9
95	Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nature Communications, 2014, 5, 5234.	5.8	127
96	Does aquaculture add resilience to the global food system?. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13257-13263.	3.3	468
97	Why trees and shrubs but rarely trubs?. Trends in Ecology and Evolution, 2014, 29, 433-434.	4.2	46
98	The forgotten half of scientific thinking. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6119-6119.	3.3	36
99	Climate engineering reconsidered. Nature Climate Change, 2014, 4, 527-529.	8.1	63
100	Multiscale regime shifts and planetary boundaries. Trends in Ecology and Evolution, 2013, 28, 389-395.	4.2	243
101	Flickering as an early warning signal. Theoretical Ecology, 2013, 6, 309-317.	0.4	81
102	Interpretation and predictions of the Emergent neutrality model: a reply to BarabÃis et al Oikos, 2013, 122, 1573-1575.	1.2	6
103	Effects of resources and mortality on the growth and reproduction of Nile perch in Lake Victoria. Freshwater Biology, 2013, 58, 828-840.	1.2	10
104	Early warning signals also precede non atastrophic transitions. Oikos, 2013, 122, 641-648.	1.2	184
105	Bimodality in stable isotope composition facilitates the tracing of carbon transfer from macrophytes to higher trophic levels. Hydrobiologia, 2013, 710, 205-218.	1.0	28
106	The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshwater Biology, 2013, 58, 494-503.	1.2	59
107	Effects of interannual climate variability on tropical tree cover. Nature Climate Change, 2013, 3, 755-758.	8.1	115
108	Repeated Parallel Evolution Reveals Limiting Similarity in Subterranean Diving Beetles. American Naturalist, 2013, 182, 67-75.	1.0	32

#	Article	IF	CITATIONS
109	Changing weather conditions and floating plants in temperate drainage ditches. Journal of Applied Ecology, 2013, 50, 585-593.	1.9	44
110	Wang et al. reply. Nature, 2013, 498, E12-E13.	13.7	2
111	Migraine Strikes as Neuronal Excitability Reaches a Tipping Point. PLoS ONE, 2013, 8, e72514.	1.1	22
112	Was Lates Late? A Null Model for the Nile Perch Boom in Lake Victoria. PLoS ONE, 2013, 8, e76847.	1.1	17
113	Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology, 2012, 93, 264-271.	1.5	243
114	Response to Comment on "Global Resilience of Tropical Forest and Savanna to Critical Transitionsâ€: Science, 2012, 336, 541-541.	6.0	11
115	Thresholds for boreal biome transitions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21384-21389.	3.3	286
116	Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature, 2012, 492, 419-422.	13.7	440
117	Anticipating Critical Transitions. Science, 2012, 338, 344-348.	6.0	1,607
118	Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology, 2012, 18, 118-126.	4.2	663
119	Bimodal transparency as an indicator for alternative states in South American lakes. Freshwater Biology, 2012, 57, 1191-1201.	1.2	28
120	Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data. PLoS ONE, 2012, 7, e41010.	1.1	638
121	Global Resilience of Tropical Forest and Savanna to Critical Transitions. Science, 2011, 334, 232-235.	6.0	954
122	Slowing Down in Spatially Patterned Ecosystems at the Brink of Collapse. American Naturalist, 2011, 177, E153-E166.	1.0	203
123	Resonance of Plankton Communities with Temperature Fluctuations. American Naturalist, 2011, 178, E85-E95.	1.0	42
124	Soil microbes drive the classic plant diversity–productivity pattern. Ecology, 2011, 92, 296-303.	1.5	517
125	Local ecosystem feedbacks and critical transitions in the climate. Ecological Complexity, 2011, 8, 223-228.	1.4	54
126	Allied attack: climate change and eutrophication. Inland Waters, 2011, 1, 101-105.	1.1	548

#	Article	IF	CITATIONS
127	Predicting microbial nitrogen pathways from basic principles. Environmental Microbiology, 2011, 13, 1477-1487.	1.8	43
128	Ambiguous climate impacts on competition between submerged macrophytes and phytoplankton in shallow lakes. Freshwater Biology, 2011, 56, 1540-1553.	1.2	59
129	Abrupt regime shifts in space and time along rivers and connected lake systems. Oikos, 2011, 120, 766-775.	1.2	79
130	Trophic Downgrading of Planet Earth. Science, 2011, 333, 301-306.	6.0	3,030
131	Effects of aquatic vegetation type on denitrification. Biogeochemistry, 2011, 104, 267-274.	1.7	77
132	The Anthropocene: From Global Change to Planetary Stewardship. Ambio, 2011, 40, 739-761.	2.8	1,175
133	Warming Can Boost Denitrification Disproportionately Due to Altered Oxygen Dynamics. PLoS ONE, 2011, 6, e18508.	1.1	128
134	Omnivory by Planktivores Stabilizes Plankton Dynamics, but May Either Promote or Reduce Algal Biomass. Ecosystems, 2010, 13, 410-420.	1.6	39
135	Alternative Stable States Driven by Density-Dependent Toxicity. Ecosystems, 2010, 13, 841-850.	1.6	33
136	Spatial correlation as leading indicator of catastrophic shifts. Theoretical Ecology, 2010, 3, 163-174.	0.4	255
137	A morphological classification capturing functional variation in phytoplankton. Freshwater Biology, 2010, 55, 614-627.	1.2	393
138	Strong growth limitation of a floating plant (<i>Lemna gibba</i>) by the submerged macrophyte (<i>Elodea nuttallii</i>) under laboratory conditions. Freshwater Biology, 2010, 55, 681-690.	1.2	30
139	Strong facilitation in mild environments: the stress gradient hypothesis revisited. Journal of Ecology, 2010, 98, 1269-1275.	1.9	271
140	Foreseeing tipping points. Nature, 2010, 467, 411-412.	13.7	165
141	Spatial selfâ€organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. Ecology, 2010, 91, 362-369.	1.5	98
142	EARLY WARNINGS FOR CATASTROPHIC SHIFTS IN ECOSYSTEMS: COMPARISON BETWEEN SPATIAL AND TEMPORAL INDICATORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 315-321.	0.7	80
143	Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in mesocosms. Fundamental and Applied Limnology, 2010, 177, 125-132.	0.4	81
144	Climateâ€dependent CO ₂ emissions from lakes. Global Biogeochemical Cycles, 2010, 24, .	1.9	140

#	Article	IF	CITATIONS
145	Navigating transformations in governance of Chilean marine coastal resources. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16794-16799.	3.3	471
146	Resilience Thinking: Integrating Resilience, Adaptability and Transformability. Ecology and Society, 2010, 15, .	1.0	2,469
147	Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecology and Society, 2009, 14, .	1.0	3,867
148	Interannual variability in species composition explained as seasonally entrained chaos. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2871-2880.	1.2	81
149	Assessing ecological quality of shallow lakes: Does knowledge of transparency suffice?. Basic and Applied Ecology, 2009, 10, 89-96.	1.2	31
150	Hydrology-Driven Regime Shifts in a Shallow Tropical Lake. Ecosystems, 2009, 12, 807-819.	1.6	58
151	Effects of Submerged Vegetation on Water Clarity Across Climates. Ecosystems, 2009, 12, 1117-1129.	1.6	69
152	The paradox of the clumps mathematically explained. Theoretical Ecology, 2009, 2, 171-176.	0.4	33
153	Climateâ€related differences in the dominance of submerged macrophytes in shallow lakes. Global Change Biology, 2009, 15, 2503-2517.	4.2	125
154	Early-warning signals for critical transitions. Nature, 2009, 461, 53-59.	13.7	3,286
155	A safe operating space for humanity. Nature, 2009, 461, 472-475.	13.7	8,638
156	The angiosperm radiation revisited, an ecological explanation for Darwin's â€~abominable mystery'. Ecology Letters, 2009, 12, 865-872.	3.0	118
157	Pulse-Driven Loss of Top-Down Control: The Critical-Rate Hypothesis. Ecosystems, 2008, 11, 226-237.	1.6	103
158	Fast response of lake plankton and nutrients to river inundations on floodplain lakes. River Research and Applications, 2008, 24, 388-406.	0.7	8
159	Chaos in a long-term experiment with a plankton community. Nature, 2008, 451, 822-825.	13.7	343
160	Microscale vegetationâ€soil feedback boosts hysteresis in a regional vegetation–climate system. Global Change Biology, 2008, 14, 1104-1112.	4.2	54
161	Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLake. Limnologica, 2008, 38, 203-219.	0.7	113
162	Regime shifts in marine ecosystems: detection, prediction and management. Trends in Ecology and Evolution, 2008, 23, 402-409.	4.2	339

#	Article	IF	CITATIONS
163	Slowing down as an early warning signal for abrupt climate change. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14308-14312.	3.3	724
164	Use of open-top chambers to study the effect of climate change in aquatic ecosystems. Limnology and Oceanography: Methods, 2008, 6, 223-229.	1.0	8
165	Info-disruption: pollution and the transfer of chemical information between organisms. Trends in Ecology and Evolution, 2007, 22, 374-379.	4.2	217
166	Adaptive Management of the Great Barrier Reef and the Grand Canyon World Heritage Areas. Ambio, 2007, 36, 586-592.	2.8	77
167	Slow Recovery from Perturbations as a Generic Indicator of a Nearby Catastrophic Shift. American Naturalist, 2007, 169, 738-747.	1.0	409
168	Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshwater Biology, 2007, 52, 977-987.	1.2	74
169	Reduced top–down control of phytoplankton in warmer climates can be explained by continuous fish reproduction. Ecological Modelling, 2007, 206, 205-212.	1.2	24
170	Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 2007, 584, 455-466.	1.0	495
171	Habitat-mediated cannibalism and microhabitat restriction in the stream invertebrate Gammarus pulex. Hydrobiologia, 2007, 589, 155-164.	1.0	42
172	The consequences of changes in abundance of Callianassa subterranea and Amphiura filiformis on sediment erosion at the Frisian Front (south-eastern North Sea). Hydrobiologia, 2007, 589, 273-285.	1.0	20
173	Can overwintering versus diapausing strategy in Daphnia determine match–mismatch events in zooplankton–algae interactions?. Oecologia, 2007, 150, 682-698.	0.9	67
174	A Theory for Cyclic Shifts between Alternative States in Shallow Lakes. Ecosystems, 2007, 10, 17-28.	1.6	76
175	Regime Shifts in Shallow Lakes. Ecosystems, 2007, 10, 1-3.	1.6	218
176	Positive feedback between global warming and atmospheric CO2concentration inferred from past climate change. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	117
177	Effects of crushed conspecifics on growth and survival of Penaeus monodon Fabricius post larvae. Aquaculture Research, 2006, 37, 224-232.	0.9	2
178	Self-organized similarity, the evolutionary emergence of groups of similar species. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6230-6235.	3.3	488
179	Importance of Nutrient Competition and Allelopathic Effects in Suppression of the Green Alga Scenedesmus obliquus by the Macrophytes Chara, Elodea and Myriophyllum. Hydrobiologia, 2006, 556, 209-220.	1.0	60
180	Impacts of agricultural phosphorus use in catchments on shallow lake water quality: About buffers, time delays and equilibria. Science of the Total Environment, 2006, 369, 280-294.	3.9	28

#	Article	IF	CITATIONS
181	Effects of interstitial refugia and current velocity on growth of the amphipodGammarus pulexLinnaeus. Journal of the North American Benthological Society, 2006, 25, 656-663.	3.0	32
182	Growth of shredders on leaf litter biofilms: the effect of light intensity. Freshwater Biology, 2005, 50, 459-466.	1.2	64
183	Synergy between small- and large-scale feedbacks of vegetation on the water cycle. Global Change Biology, 2005, 11, 1003-1012.	4.2	118
184	A strategy to improve the contribution of complex simulation models to ecological theory. Ecological Modelling, 2005, 185, 153-164.	1.2	114
185	Cascading effects of overfishing marine systems. Trends in Ecology and Evolution, 2005, 20, 579-581.	4.2	234
186	IMPLICATIONS OF SPATIAL HETEROGENEITY FOR CATASTROPHIC REGIME SHIFTS IN ECOSYSTEMS. Ecology, 2005, 86, 1797-1807.	1.5	240
187	What Minimal Models Cannot Tell: A Comment on "A Model of Phytoplankton Blooms― American Naturalist, 2004, 163, 924-926.	1.0	6
188	Increase of atmospheric CO2 promotes phytoplankton productivity. Ecology Letters, 2004, 7, 446-451.	3.0	186
189	Mechanisms for marine regime shifts: Can we use lakes as microcosms for oceans?. Progress in Oceanography, 2004, 60, 303-319.	1.5	48
190	Large Species Shifts Triggered by Small Forces. American Naturalist, 2004, 164, 255-266.	1.0	116
191	Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annual Review of Ecology, Evolution, and Systematics, 2004, 35, 557-581.	3.8	2,674
192	Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia, 2003, 491, 9-18.	1.0	182
193	Regime Shifts in the Sahara and Sahel: Interactions between Ecological and Climatic Systems in Northern Africa. Ecosystems, 2003, 6, 524-532.	1.6	212
194	Charisma: a spatial explicit simulation model of submerged macrophytes. Ecological Modelling, 2003, 159, 103-116.	1.2	70
195	Alternative attractors may boost uncertainty and sensitivity in ecological models. Ecological Modelling, 2003, 159, 117-124.	1.2	39
196	The determination of ecological status in shallow lakes - a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems, 2003, 13, 507-549.	0.9	266
197	Slow Response of Societies to New Problems: Causes and Costs. Ecosystems, 2003, 6, 493-502.	1.6	83
198	Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution, 2003, 18, 648-656.	4.2	2,206

#	Article	IF	CITATIONS
199	Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4040-4045.	3.3	338
200	Sunk ost Effects and Vulnerability to Collapse in Ancient Societies. Current Anthropology, 2003, 44, 722-728.	0.8	143
201	Fish facilitate wave resuspension of sediment. Limnology and Oceanography, 2003, 48, 1920-1926.	1.6	87
202	Climatic effects on regime shifts in lakes: A reply. Limnology and Oceanography, 2003, 48, 1353-1356.	1.6	7
203	Dominance of charophytes in eutrophic shallow lakes—when should we expect it to be an alternative stable state?. Aquatic Botany, 2002, 72, 275-296.	0.8	98
204	Aquatic macrophytes: restore, eradicate or is there a compromise?. Aquatic Botany, 2002, 72, 387-403.	0.8	87
205	PISCATOR, an individual-based model to analyze the dynamics of lake fish communities. Ecological Modelling, 2002, 152, 261-278.	1.2	42
206	Perpest model, a caseâ€based reasoning approach to predict ecological risks of pesticides. Environmental Toxicology and Chemistry, 2002, 21, 2500-2506.	2.2	55
207	El Niño effects on the dynamics of terrestrial ecosystems. Trends in Ecology and Evolution, 2001, 16, 89-94.	4.2	409
208	Alternative Attractors of Shallow Lakes. Scientific World Journal, The, 2001, 1, 254-263.	0.8	74
209	El Niño as a Window of Opportunity for the Restoration of Degraded Arid Ecosystems. Ecosystems, 2001, 4, 151-159.	1.6	211
210	Catastrophic response of lakes to benthivorous fish introduction. Oikos, 2001, 94, 344-350.	1.2	140
211	Catastrophic shifts in ecosystems. Nature, 2001, 413, 591-596.	13.7	5,656
212	Climatic warming causes regime shifts in lake food webs. Limnology and Oceanography, 2001, 46, 1780-1783.	1.6	192
213	Minimal models of top-down control of phytoplankton. Freshwater Biology, 2000, 45, 265-283.	1.2	35
214	Socioeconomic Mechanisms Preventing Optimum Use of Ecosystem Services: An Interdisciplinary Theoretical Analysis. Ecosystems, 2000, 3, 451-471.	1.6	151
215	Geometric Analysis of Ecological Models with Slow and Fast Processes. Ecosystems, 2000, 3, 507-521.	1.6	133
216	Effects of fish on plankton dynamics: a theoretical analysis. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 1208-1219.	0.7	81

#	Article	IF	CITATIONS
217	A simple model for evaluating the costs and benefits of aquatic macrophytes. Hydrobiologia, 1999, 415, 335-339.	1.0	19
218	The effect of aquatic vegetation on turbidity; how important are the filter feeders?. Hydrobiologia, 1999, 408/409, 307-316.	1.0	65
219	THE ROLE OF CHARACEAN ALGAE IN THE MANAGEMENT OF EUTROPHIC SHALLOW LAKES. Journal of Phycology, 1998, 34, 750-756.	1.0	97
220	ON THE DOMINANCE OF FILAMENTOUS CYANOBACTERIA IN SHALLOW, TURBID LAKES. Ecology, 1997, 78, 272-282.	1.5	414
221	THE INTERPLAY OF FACILITATION AND COMPETITION IN PLANT COMMUNITIES. Ecology, 1997, 78, 1966-1975.	1.5	835
222	On the implications of predator avoidance. Aquatic Ecology, 1997, 31, 99-107.	0.7	14
223	Implications of Spatial Heterogeneity for the Paradox of Enrichment. Ecology, 1995, 76, 2270-2277.	1.5	135
224	Vegetated areas with clear water in turbid shallow lakes. Aquatic Botany, 1994, 49, 193-196.	0.8	107
225	MEGAPLANT: a simulation model of the dynamics of submerged plants. Aquatic Botany, 1993, 45, 341-356.	0.8	69
226	Modeling Growth and Survival in an Age-0 Fish Cohort. Transactions of the American Fisheries Society, 1993, 122, 927-941.	0.6	31
227	Estimating habitat isolation in landscape planning. Landscape and Urban Planning, 1992, 23, 1-16.	3.4	356
228	Distribution and dynamics of submerged vegetation in a chain of shallow eutrophic lakes. Aquatic Botany, 1992, 42, 199-216.	0.8	122
229	Should we expect strange attractors behind plankton dynamics – and if so, should we bother?. Journal of Plankton Research, 1991, 13, 1291-1305.	0.8	128
230	A safe operating space for humanity. , 0, .		1
231	Large fish forage lower in the food web and food webs are more truncated in warmer climates. Hydrobiologia, 0, , 1.	1.0	6