Shengyuan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3400751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fundamentals of Hysteresis in Perovskite Solar Cells: From Structureâ€Property Relationship to Neoteric Breakthroughs. Chemical Record, 2022, 22, .	2.9	11
2	Recent Progress of Electrospun Nanofibers for Zinc–Air Batteries. Advanced Fiber Materials, 2022, 4, 185-202.	7.9	33
3	Carbon doped lead-free perovskite with superior mechanical and thermal stability. Molecular Physics, 2022, 120, .	0.8	8
4	Perovskite fiber-shaped optoelectronic devices for wearable applications. Journal of Materials Chemistry C, 2022, 10, 6957-6991.	2.7	18
5	Graphene-based implantable neural electrodes for insect flight control. Journal of Materials Chemistry B, 2022, 10, 4632-4639.	2.9	4
6	<i>In situ</i> construction of polyether-based composite electrolyte with bi-phase ion conductivity and stable electrolyte/electrode interphase for solid-state lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 19641-19648.	5.2	14
7	Heat induction in two-dimensional graphene–Fe ₃ O ₄ nanohybrids for magnetic hyperthermia applications with artificial neural network modeling. RSC Advances, 2021, 11, 21702-21715.	1.7	7
8	Thin metal film on porous carbon as a medium for electrochemical energy storage. Journal of Power Sources, 2021, 489, 229522.	4.0	19
9	Lead-free and electron transport layer-free perovskite yarns: Designed for knitted solar fabrics. Chemical Engineering Journal, 2021, 410, 128384.	6.6	15
10	Transformation of Supercapacitive Charge Storage Behaviour in a Multi elemental Spinel CuMn2O4 Nanofibers with Alkaline and Neutral Electrolytes. Advanced Fiber Materials, 2021, 3, 265-274.	7.9	24
11	High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization. International Journal of Biological Macromolecules, 2021, 181, 1063-1071.	3.6	43
12	Understanding electrochemical capacitors with in-situ techniques. Renewable and Sustainable Energy Reviews, 2021, 149, 111418.	8.2	32
13	A Route Toward Smart System Integration: From Fiber Design to Device Construction. Advanced Materials, 2020, 32, e1902301.	11.1	116
14	High stress-driven voltages in net-like layer-supported organic–inorganic perovskites. Journal of Materials Chemistry C, 2020, 8, 2643-2658.	2.7	14
15	Which is a better fluorescent sensor: aggregation-induced emission-based nanofibers or thin-coating films?. Materials Advances, 2020, 1, 574-578.	2.6	9
16	Enhanced Photocatalytic Performance of Surface-Modified TiO2 Nanofibers with Rhodizonic Acid. Advanced Fiber Materials, 2020, 2, 118-122.	7.9	93
17	Electrospun Nanofibers-Based Face Masks. Advanced Fiber Materials, 2020, 2, 161-166.	7.9	108
18	Flexible Solar Yarns with 15.7% Power Conversion Efficiency, Based on Electrospun Perovskite Composite Nanofibers. Solar Rrl, 2020, 4, 2000269.	3.1	41

Shengyuan Yang

#	Article	IF	CITATIONS
19	Allâ€Celluloseâ€Based Quasiâ€Solidâ€State Sodiumâ€Ion Hybrid Capacitors Enabled by Structural Hierarchy. Advanced Functional Materials, 2019, 29, 1903895.	7.8	75
20	Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances, 2019, 1, 3807-3835.	2.2	702
21	Perovskite Solar Fibers: Current Status, Issues and Challenges. Advanced Fiber Materials, 2019, 1, 101-125.	7.9	42
22	Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy and Environmental Science, 2019, 12, 2148-2160.	15.6	104
23	Multifunctional fabrics of carbon nanotube fibers. Journal of Materials Chemistry A, 2019, 7, 8790-8797.	5.2	54
24	Highly efficient photovoltaic energy storage hybrid system based on ultrathin carbon electrodes designed for a portable and flexible power source. Journal of Power Sources, 2019, 422, 196-207.	4.0	24
25	Perovskite solar cell-hybrid devices: thermoelectrically, electrochemically, and piezoelectrically connected power packs. Journal of Materials Chemistry A, 2019, 7, 26661-26692.	5.2	24
26	Polymer versus Cation of Gel Polymer Electrolytes in the Charge Storage of Asymmetric Supercapacitors. Industrial & Engineering Chemistry Research, 2019, 58, 654-664.	1.8	26
27	Characteristics of ZnO–SnO ₂ Composite Nanofibers as a Photoanode in Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research, 2019, 58, 643-653.	1.8	35
28	Water-based fluorescent paint: Presenting a novel approach to study and solve the aggregation caused quench (ACQ) effect in traditional fluorescent materials. Progress in Organic Coatings, 2018, 120, 1-9.	1.9	36
29	Surface Self-Assembly of Functional Electroactive Nanofibers on Textile Yarns as a Facile Approach toward Super Flexible Energy Storage. ACS Applied Energy Materials, 2018, 1, 377-386.	2.5	47
30	Materials interaction in aggregation-induced emission (AIE)-based fluorescent resin for smart coatings. Journal of Materials Chemistry C, 2018, 6, 12849-12857.	2.7	57
31	Polyester@MXene nanofibers-based yarn electrodes. Journal of Power Sources, 2018, 396, 683-690.	4.0	147
32	An attempt to adopt aggregation-induced emission to study organic–inorganic composite materials. Journal of Materials Chemistry C, 2018, 6, 7003-7011.	2.7	23
33	A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties. Journal of Materials Chemistry A, 2018, 6, 13633-13643.	5.2	55
34	Design and synthesis of porous channel-rich carbon nanofibers for self-standing oxygen reduction reaction and hydrogen evolution reaction bifunctional catalysts in alkaline medium. Journal of Materials Chemistry A, 2017, 5, 7507-7515.	5.2	69
35	Studying a novel AIE coating and its handling process via fluorescence spectrum. RSC Advances, 2017, 7, 41127-41135.	1.7	8
36	Green approach to fabricate Polyindole composite nanofibers for energy and sensor applications. Materials Letters, 2017, 209, 400-403.	1.3	40

Shengyuan Yang

#	Article	IF	CITATIONS
37	Controlled synergistic strategy to fabricate 3D-skeletal hetero-nanosponges with high performance for flexible energy storage applications. Journal of Materials Chemistry A, 2017, 5, 21114-21121.	5.2	44
38	Unveiling Polyindole: Freestanding As-electrospun Polyindole Nanofibers and Polyindole/Carbon Nanotubes Composites as Enhanced Electrodes for Flexible All-solid-state Supercapacitors. Electrochimica Acta, 2017, 247, 400-409.	2.6	76
39	Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon, 2017, 113, 151-158.	5.4	243
40	Systemic research of fluorescent emulsion systems and their polymerization process with a fluorescent probe by an AIE mechanism. RSC Advances, 2016, 6, 74225-74233.	1.7	11
41	Hierarchically porous carbon black/graphene hybrid fibers for high performance flexible supercapacitors. RSC Advances, 2016, 6, 50112-50118.	1.7	46
42	Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors. Journal of Power Sources, 2016, 319, 271-280.	4.0	105
43	Large Scale Production of Continuous Hydrogel Fibers with Anisotropic Swelling Behavior by Dynamicâ€Crosslinking‧pinning. Macromolecular Rapid Communications, 2016, 37, 1795-1801.	2.0	33
44	Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance. ACS Applied Materials & amp; Interfaces, 2016, 8, 14622-14627.	4.0	117
45	Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. Journal of Power Sources, 2016, 306, 481-488.	4.0	246
46	A novel stimuli-responsive fluorescent elastomer based on an AIE mechanism. Polymer Chemistry, 2015, 6, 8194-8202.	1.9	33
47	Conversion efficiency enhancement of CdS quantum dot-sensitized electrospun nanostructured TiO2 solar cells by organic dipole treatment. Materials Letters, 2014, 116, 345-348.	1.3	10
48	TiO2 Derived by Titanate Route from Electrospun Nanostructures for High-Performance Dye-Sensitized Solar Cells. Langmuir, 2012, 28, 6202-6206.	1.6	30
49	Mesoporous SnO2 agglomerates with hierarchical structures as an efficient dual-functional material for dye-sensitized solar cells. Chemical Communications, 2012, 48, 10865.	2.2	56
50	Which is a superior material for scattering layer in dye-sensitized solar cells—electrospun rice grain- or nanofiber-shaped TiO2?. Journal of Materials Chemistry, 2011, 21, 12210.	6.7	60
51	Rice grain-shaped TiO2 mesostructures by electrospinning for dye-sensitized solar cells. Chemical Communications, 2010, 46, 7421.	2.2	89