Tobias Placke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3399916/publications.pdf Version: 2024-02-01

		41339	30920
143	11,116	49	102
papers	citations	h-index	g-index
153	153	153	8186
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synergistic Effects of Surface Coating and Bulk Doping in Niâ€Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for Highâ€Energy Lithium Ion Batteries. ChemSusChem, 2022, 15, .	6.8	9
2	Understanding the Role of Commercial Separators and Their Reactivity toward LiPF ₆ on the Failure Mechanism of Highâ€Voltage NCM523 Graphite Lithium Ion Cells. Advanced Energy Materials, 2022, 12, 2102599.	19.5	35
3	A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+. Advanced Energy Materials, 2022, 12, .	19.5	70
4	Magnesium Substitution in Niâ€Rich NMC Layered Cathodes for Highâ€Energy Lithium Ion Batteries. Advanced Energy Materials, 2022, 12, .	19.5	63
5	Synergistic Effects of Surface Coating and Bulk Doping in Niâ€Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for Highâ€Energy Lithiumâ€Ion Batteries. ChemSusChem, 2022, , e202200078.	6.8	0
6	Dendriteâ€Free Zinc Deposition Induced by Zincâ€Phytate Coating for Longâ€Life Aqueous Zinc Batteries. Batteries and Supercaps, 2022, 5, .	4.7	7
7	Impact of Degree of Graphitization, Surface Properties and Particle Size Distribution on Electrochemical Performance of Carbon Anodes for Potassiumâ€lon Batteries. Batteries and Supercaps, 2022, 5, .	4.7	9
8	Preâ€Lithiation of Silicon Anodes by Thermal Evaporation of Lithium for Boosting the Energy Density of Lithium Ion Cells. Advanced Functional Materials, 2022, 32, .	14.9	32
9	Investigation of Lithium Polyacrylate Binders for Aqueous Processing of Niâ€Rich Lithium Layered Oxide Cathodes for Lithiumâ€lon Batteries. ChemSusChem, 2022, 15, .	6.8	5
10	Overview of batteries and battery management for electric vehicles. Energy Reports, 2022, 8, 4058-4084.	5.1	184
11	Advanced Dualâ€lon Batteries with Highâ€Capacity Negative Electrodes Incorporating Black Phosphorus. Advanced Science, 2022, , 2201116.	11.2	11
12	Impact of Degree of Graphitization, Surface Properties and Particle Size Distribution on Electrochemical Performance of Carbon Anodes for Potassiumâ€ion Batteries. Batteries and Supercaps, 2022, 5, .	4.7	7
13	Preâ€Lithiation of Silicon Anodes by Thermal Evaporation of Lithium for Boosting the Energy Density of Lithium Ion Cells (Adv. Funct. Mater. 22/2022). Advanced Functional Materials, 2022, 32, .	14.9	0
14	Coating of a Novel Lithium-Containing Hybrid Oligomer Additive on Nickel-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials for High-Stability and High-Safety Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 7394-7408.	6.7	14
15	Effective stabilization of NCM622 cathodes in aqueous/non-aqueous hybrid electrolytes by adding a phosphazene derivate as Co-solvent. Journal of Power Sources, 2022, 541, 231670.	7.8	3
16	Negative sulfur-based electrodes and their application in battery cells: Dual-ion batteries as an example. Journal of Solid State Electrochemistry, 2022, 26, 2077-2088.	2.5	1
17	Opportunities and Challenges of Li ₂ C ₄ O ₄ as Preâ€Lithiation Additive for the Positive Electrode in NMC622 Silicon/Graphite Lithium Ion Cells. Advanced Science, 2022, 9, .	11.2	20
18	Finding the sweet spot: Li/Mn-rich cathode materials with fine-tuned core–shell particle design for high-energy lithium ion batteries. Electrochimica Acta, 2021, 366, 137413.	5.2	14

#	Article	IF	CITATIONS
19	Si-on-Graphite fabricated by fluidized bed process for high-capacity anodes of Li-ion batteries. Chemical Engineering Journal, 2021, 407, 126603.	12.7	31
20	Study of electrochemical performance and thermal property of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with a novel oligomer additive for high-safety lithium-ion batteries. Chemical Engineering Journal, 2021, 405, 126727.	12.7	26
21	Enabling Mgâ€Based Ionic Liquid Electrolytes for Hybrid Dualâ€Ion Capacitors. Batteries and Supercaps, 2021, 4, 504-512.	4.7	14
22	Exploiting the Degradation Mechanism of NCM523Graphite Lithiumâ€Ion Full Cells Operated at High Voltage. ChemSusChem, 2021, 14, 595-613.	6.8	56
23	Understanding the Outstanding Highâ€Voltage Performance of NCM523 Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte. Advanced Energy Materials, 2021, 11, 2003738.	19.5	86
24	On the Beneficial Impact of Li ₂ CO ₃ as Electrolyte Additive in NCM523 â^¥ Graphite Lithium Ion Cells Under Highâ€Voltage Conditions. Advanced Energy Materials, 2021, 11, 2003756.	19.5	59
25	Case study of N-carboxyanhydrides in silicon-based lithium ion cells as a guideline for systematic electrolyte additive research. Cell Reports Physical Science, 2021, 2, 100327.	5.6	16
26	Solvent Co-intercalation into Few-layered Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXenes in Lithium Ion Batteries Induced by Acidic or Basic Post-treatment. ACS Nano, 2021, 15, 3295-3308.	14.6	35
27	A Thorough Analysis of Two Different Preâ€Lithiation Techniques for Silicon/Carbon Negative Electrodes in Lithium Ion Batteries. Batteries and Supercaps, 2021, 4, 1163-1174.	4.7	21
28	Graphite Lithiumâ€ion Cells: On the Beneficial Impact of Li ₂ CO ₃ as Electrolyte Additive in NCM523 â^¥ Graphite Lithium Ion Cells Under Highâ€Voltage Conditions (Adv. Energy Mater.) Tj ETQq(D 1@ ß rgBT	Øverlock 1
29	Mechanistic Insights into the Preâ€Lithiation of Silicon/Graphite Negative Electrodes in "Dry State―and After Electrolyte Addition Using Passivated Lithium Metal Powder. Advanced Energy Materials, 2021, 11, 2100925.	19.5	46
30	Scalable Synthesis of MAX Phase Precursors toward Titanium-Based MXenes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 26074-26083.	8.0	32
31	ldentification of Li _{<i>x</i>} Sn Phase Transitions During Lithiation of Tin Nanoparticle-Based Negative Electrodes from Ex Situ ¹¹⁹ Sn MAS NMR and Operando ⁷ Li NMR and XRD. ACS Applied Energy Materials, 2021, 4, 7278-7287.	5.1	8
32	Re-evaluating common electrolyte additives for high-voltage lithium ion batteries. Cell Reports Physical Science, 2021, 2, 100521.	5.6	32
33	Opportunities and Limitations of Ionic Liquid―and Organic Carbonate Solventâ€Based Electrolytes for Mgâ€Ionâ€Based Dualâ€Ion Batteries. ChemSusChem, 2021, 14, 4480-4498.	6.8	22
34	Improved Lithium-Ion Transport Within the LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Secondary Cathode Particles Through a Template-Assisted Synthesis Route. ACS Sustainable Chemistry and Engineering, 2021, 9, 12560-12574.	6.7	4
35	Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells. Journal of Materials Chemistry A, 2021, 9, 7546-7555.	10.3	62
36	Solvent Coâ€Intercalationâ€Induced Activation and Capacity Fade Mechanism of Fewâ€IMultiâ€Layered MXenes in Lithium Ion Batteries. Small. 2021. 17. e2104130.	10.0	12

#	Article	IF	CITATIONS
37	Lithiation Mechanism and Improved Electrochemical Performance of TiSnSb-Based Negative Electrodes for Lithium-Ion Batteries. Chemistry of Materials, 2021, 33, 8173-8182.	6.7	2
38	Exploiting the Degradation Mechanism of NCM523   Graphite Lithiumâ€lon Full Cells Operated at High Voltage. ChemSusChem, 2021, 14, 491-491.	6.8	2
39	19F MAS NMR study on anion intercalation into graphite positive electrodes from binary-mixed highly concentrated electrolytes. Journal of Power Sources Advances, 2021, 12, 100075.	5.1	4
40	Demonstrating Apparently Inconspicuous but Sensitive Impacts on the Rollover Failure of Lithium-Ion Batteries at a High Voltage. ACS Applied Materials & Interfaces, 2021, 13, 57241-57251.	8.0	21
41	Contribution of nano-design approaches to future electrochemical energy storage systems. Frontiers of Nanoscience, 2021, 19, 273-325.	0.6	2
42	A reality check and tutorial on electrochemical characterization of battery cell materials: How to choose the appropriate cell setup. Materials Today, 2020, 32, 131-146.	14.2	193
43	Tailoring Electrolyte Additives with Synergistic Functional Moieties for Silicon Negative Electrode-Based Lithium Ion Batteries: A Case Study on Lactic Acid <i>O</i> -Carboxyanhydride. Chemistry of Materials, 2020, 32, 173-185.	6.7	31
44	Mechanochemical Synthesis of Fe–Si-Based Anode Materials for High-Energy Lithium Ion Full-Cells. ACS Applied Energy Materials, 2020, 3, 743-758.	5.1	35
45	Enabling Natural Graphite in Highâ€Voltage Aqueous Graphite Zn Metal Dualâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001256.	19.5	43
46	Identical Materials but Different Effects of Film-Forming Electrolyte Additives in Li Ion Batteries: Performance of a Benchmark System as the Key. Chemistry of Materials, 2020, 32, 6279-6284.	6.7	22
47	Impact of the Crystalline Li ₁₅ Si ₄ Phase on the Self-Discharge Mechanism of Silicon Negative Electrodes in Organic Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 55903-55912.	8.0	12
48	Aqueous Dualâ€ion Batteries: Enabling Natural Graphite in Highâ€Voltage Aqueous Graphite Zn Metal Dualâ€ion Batteries (Adv. Energy Mater. 41/2020). Advanced Energy Materials, 2020, 10, 2070169.	19.5	1
49	Hexafluorophosphate-Bis(trifluoromethanesulfonyl)imide anion co-intercalation for increased performance of dual-carbon battery using mixed salt electrolyte. Journal of Power Sources, 2020, 479, 229084.	7.8	14
50	Impact of the silicon particle size on the pre-lithiation behavior of silicon/carbon composite materials for lithium ion batteries. Journal of Power Sources, 2020, 464, 228224.	7.8	40
51	Experimental and computational studies of electrochemical anion intercalation into graphite from target-oriented designed borate-based ionic liquid electrolytes. Journal of Power Sources, 2020, 469, 228397.	7.8	15
52	Toward Green Battery Cells: Perspective on Materials and Technologies (Small Methods 7/2020). Small Methods, 2020, 4, 2070023.	8.6	5
53	Dual″on Batteries: Development of Safe and Sustainable Dual″on Batteries Through Hybrid Aqueous/Nonaqueous Electrolytes (Adv. Energy Mater. 8/2020). Advanced Energy Materials, 2020, 10, 2070033.	19.5	2
54	Development of Safe and Sustainable Dualâ€ion Batteries Through Hybrid Aqueous/Nonaqueous Electrolytes. Advanced Energy Materials, 2020, 10, 1902709.	19.5	51

#	Article	IF	CITATIONS
55	Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods, 2020, 4, 2000039.	8.6	177
56	An electrochemical evaluation of nitrogen-doped carbons as anodes for lithium ion batteries. Carbon, 2020, 164, 261-271.	10.3	53
57	A three-dimensional TiO2-Graphene architecture with superior Li ion and Na ion storage performance. Journal of Power Sources, 2020, 461, 228129.	7.8	22
58	Towards High-Performance Li-rich NCMâ^£â^£Graphite Cells by Germanium-Polymer Coating of the Positive Electrode Material. Journal of the Electrochemical Society, 2020, 167, 060524.	2.9	14
59	Novel In Situ Gas Formation Analysis Technique Using a Multilayer Pouch Bag Lithium Ion Cell Equipped with Gas Sampling Port. Journal of the Electrochemical Society, 2020, 167, 060516.	2.9	23
60	Li/Mn-Rich Cathode Materials with Low-Cobalt Content and Core-Shell Particle Design for High-Energy Lithium Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 060519.	2.9	14
61	Editors' Choice—Mechanistic Elucidation of Anion Intercalation into Graphite from Binary-Mixed Highly Concentrated Electrolytes via Complementary ¹⁹ F MAS NMR and XRD Studies. Journal of the Electrochemical Society, 2020, 167, 140526.	2.9	31
62	Enabling High Performance Potassiumâ€Based Dualâ€Graphite Battery Cells by Highly Concentrated Electrolytes. Batteries and Supercaps, 2019, 2, 992-1006.	4.7	39
63	Designing Graphiteâ€Based Positive Electrodes and Their Properties in Dualâ€ŀon Batteries Using Particle Sizeâ€Adjusted Active Materials. Energy Technology, 2019, 7, 1900528.	3.8	9
64	High Capacity Utilization of Li Metal Anodes by Application of Celgard Separator-Reinforced Ternary Polymer Electrolyte. Journal of the Electrochemical Society, 2019, 166, A2142-A2150.	2.9	26
65	An Approach for Pre-Lithiation of Li _{1+<i>x</i>} Ni _{0.5} Mn _{1.5} O ₄ Cathodes Mitigating Active Lithium Loss. Journal of the Electrochemical Society, 2019, 166, A3531-A3538.	2.9	28
66	Improving the Cycling Performance of High-Voltage NMC111 Graphite Lithium Ion Cells By an Effective Urea-Based Electrolyte Additive. Journal of the Electrochemical Society, 2019, 166, A2910-A2920.	2.9	16
67	Correlation of Structure and Performance of Hard Carbons as Anodes for Sodium Ion Batteries. Chemistry of Materials, 2019, 31, 7288-7299.	6.7	94
68	Understanding the impact of calcination time of high-voltage spinel Li1+Ni0.5Mn1.5O4 on structure and electrochemical behavior. Electrochimica Acta, 2019, 325, 134901.	5.2	14
69	Reversible Anion Storage in a Metal-Organic Framework for Dual-Ion Battery Systems. Journal of the Electrochemical Society, 2019, 166, A5474-A5482.	2.9	50
70	Unravelling charge/discharge and capacity fading mechanisms in dual-graphite battery cells using an electron inventory model. Energy Storage Materials, 2019, 21, 414-426.	18.0	50
71	Lithium Metal Batteries: Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium (Adv. Energy Mater.) Tj ETQq1 1	0 .7%4 314	1 rgBT /Overlo
72	Surface-Modified Tin Nanoparticles and Their Electrochemical Performance in Lithium Ion Battery Cells. ACS Applied Nano Materials, 2019, 2, 3577-3589.	5.0	19

#	Article	IF	CITATIONS
73	Boosting Aqueous Batteries by Conversion-Intercalation Graphite Cathode Chemistry. Joule, 2019, 3, 1184-1187.	24.0	7
74	Surface Modification of Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 18404-18414.	8.0	177
75	Effect of mesoporous carbon support nature and pretreatments on palladium loading, dispersion and apparent catalytic activity in hydrogenation of myrcene. Journal of Catalysis, 2019, 372, 226-244.	6.2	29
76	Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium. Advanced Energy Materials, 2019, 9, 1900574.	19.5	123
77	Porous Graphene-like Carbon from Fast Catalytic Decomposition of Biomass for Energy Storage Applications. ACS Omega, 2019, 4, 21446-21458.	3.5	21
78	Enabling High Performance Potassiumâ€Based Dualâ€Graphite Battery Cells by Highly Concentrated Electrolytes. Batteries and Supercaps, 2019, 2, 967-967.	4.7	0
79	Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems. Advanced Energy Materials, 2019, 9, 1803170.	19.5	276
80	Synthesis and Comparative Investigation of Silicon Transition Metal Silicide Composite Anodes for Lithium Ion Batteries. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 248-256.	1.2	10
81	Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy, 2018, 3, 267-278.	39.5	2,069
82	New insights into electrochemical anion intercalation into carbonaceous materials for dual-ion batteries: Impact of the graphitization degree. Carbon, 2018, 131, 201-212.	10.3	75
83	Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes. Electrochimica Acta, 2018, 260, 514-525.	5.2	133
84	A step towards understanding the beneficial influence of a LIPON-based artificial SEI on silicon thin film anodes in lithium-ion batteries. Nanoscale, 2018, 10, 2128-2137.	5.6	56
85	New insights into pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy. Journal of Power Sources, 2018, 378, 522-526.	7.8	36
86	Triphenylphosphine Oxide as Highly Effective Electrolyte Additive for Graphite/NMC811 Lithium Ion Cells. Chemistry of Materials, 2018, 30, 2726-2741.	6.7	110
87	Carbons from biomass precursors as anode materials for lithium ion batteries: New insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. Carbon, 2018, 128, 147-163.	10.3	168
88	Enabling bis(fluorosulfonyl)imide-based ionic liquid electrolytes for application in dual-ion batteries. Journal of Power Sources, 2018, 373, 193-202.	7.8	53
89	Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells. Beilstein Journal of Nanotechnology, 2018, 9, 2381-2395.	2.8	14
90	Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries. Joule, 2018, 2, 2528-2550.	24.0	312

#	Article	IF	CITATIONS
91	Toward High Power Batteries: Pre-lithiated Carbon Nanospheres as High Rate Anode Material for Lithium Ion Batteries. ACS Applied Energy Materials, 2018, 1, 4321-4331.	5.1	40
92	A route towards understanding the kinetic processes of bis(trifluoromethanesulfonyl) imide anion intercalation into graphite for dual-ion batteries. Electrochimica Acta, 2018, 284, 669-680.	5.2	41
93	Pentafluorophenyl Isocyanate as an Effective Electrolyte Additive for Improved Performance of Silicon-Based Lithium-Ion Full Cells. ACS Applied Materials & Interfaces, 2018, 10, 28187-28198.	8.0	49
94	Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges. Batteries, 2018, 4, 4.	4.5	251
95	Ironâ€Catalyzed Graphitic Carbon Materials from Biomass Resources as Anodes for Lithiumâ€lon Batteries. ChemSusChem, 2018, 11, 2776-2787.	6.8	81
96	Sodium-Based vs. Lithium-Based Dual-Ion Cells: Electrochemical Study of Anion Intercalation/De-Intercalation into/from Graphite and Metal Plating/Dissolution Behavior. Electrochimica Acta, 2017, 228, 18-27.	5.2	65
97	A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries. ACS Nano, 2017, 11, 4731-4744.	14.6	178
98	Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. Journal of Solid State Electrochemistry, 2017, 21, 1939-1964.	2.5	787
99	Anodic Behavior of the Aluminum Current Collector in Imideâ€Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide‣ayer Thickness. ChemSusChem, 2017, 10, 804-814.	6.8	75
100	Evaluation of Allylboronic Acid Pinacol Ester as Effective Shutdown Overcharge Additive for Lithium Ion Cells. Journal of the Electrochemical Society, 2017, 164, A168-A172.	2.9	14
101	In Situ Dilatometric Study of the Binder Influence on the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide Anions into Graphite. Electrochimica Acta, 2017, 257, 423-435.	5.2	36
102	A Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A2479-A2486.	2.9	143
103	Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 25905-25918.	2.8	162
104	Alternative electrochemical energy storage: potassium-based dual-graphite batteries. Energy and Environmental Science, 2017, 10, 2090-2094.	30.8	234
105	Local structural changes of nano-crystalline ZnFe2O4 during lithiation and de-lithiation studied by X-ray absorption spectroscopy. Electrochimica Acta, 2017, 246, 699-706.	5.2	19
106	Suppression of Aluminum Current Collector Dissolution by Protective Ceramic Coatings for Better Highâ€Voltage Battery Performance. ChemPhysChem, 2017, 18, 156-163.	2.1	33
107	Alternative electrochemical energy storage: potassium-based dual-graphite batteries. Energy and Environmental Science, 2017, 10, 2090-2094.	30.8	82
108	Does Size really Matter? New Insights into the Intercalation Behavior of Anions into a Graphite-Based Positive Electrode for Dual-Ion Batteries. Electrochimica Acta, 2016, 209, 44-55.	5.2	156

#	Article	IF	CITATIONS
109	Investigation of a porous NiSi 2 /Si composite anode material used for lithium-ion batteries by X-ray absorption spectroscopy. Journal of Power Sources, 2016, 324, 830-835.	7.8	16
110	Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency. Chemistry of Materials, 2016, 28, 7203-7217.	6.7	317
111	New insights into the uptake/release of FTFSIâ^ anions into graphite by means of in situ powder X-ray diffraction. Electrochemistry Communications, 2016, 71, 52-55.	4.7	43
112	Synthesis and electrochemical characterization of nano-sized Ag4Sn particles as anode material for lithium-ion batteries. Electrochimica Acta, 2016, 196, 597-602.	5.2	17
113	Nanostructured ZnFe2O4 as Anode Material for Lithium-Ion Batteries: Ionic Liquid-Assisted Synthesis and Performance Evaluation with Special Emphasis on Comparative Metal Dissolution. Acta Ćhimica Slovenica, 2016, 63, 470-483.	0.6	35
114	Assessment of Surface Heterogeneity: a Route to Correlate and Quantify the 1 st Cycle Irreversible Capacity Caused by SEI Formation to the Various Surfaces of Graphite Anodes for Lithium Ion Cells. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1451-1469.	2.8	45
115	Investigating the Mg–Si Binary System via Combinatorial Sputter Deposition As High Energy Density Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20124-20133.	8.0	40
116	Dilatometric Study of the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide and Hexafluorophosphate Anions into Carbon-Based Positive Electrodes. ECS Transactions, 2015, 69, 9-21.	0.5	33
117	Facile Synthesis and Lithium Storage Properties of a Porous NiSi ₂ /Si/Carbon Composite Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 1508-1515.	8.0	71
118	<i>In situ</i> X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries. CrystEngComm, 2015, 17, 8500-8504.	2.6	44
119	Synthesis of Spherical Graphite Particles and Their Application as Cathode Material in Dual-Ion Cells. ECS Transactions, 2015, 66, 1-12.	0.5	18
120	The Mechanism of SEI Formation on Single Crystal Si(100), Si(110) and Si(111) Electrodes. Journal of the Electrochemical Society, 2015, 162, A2281-A2288.	2.9	32
121	Influence of Thermal Treated Carbon Black Conductive Additive on the Performance of High Voltage Spinel Cr-Doped LiNi _{0.5} Mn _{1.5} O ₄ Composite Cathode Electrode. Journal of the Electrochemical Society, 2015, 162, A339-A343.	2.9	53
122	Study of the Electrochemical Behavior of Dual-Graphite Cells Using Ionic Liquid-Based Electrolytes. ECS Transactions, 2014, 58, 15-25.	0.5	49
123	In situ Xâ€ r ay Diffraction Studies of Cation and Anion InterÂcalation into Graphitic Carbons for Electrochemical Energy Storage Applications. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1996-2006.	1.2	121
124	Study of the Electrochemical Intercalation of Different Anions from Non-Aqueous Electrolytes into a Graphite-Based Cathode. ECS Transactions, 2014, 58, 55-65.	0.5	45
125	Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries. Nanotechnology, 2014, 25, 355401.	2.6	15
126	Dual-Ion Cells based on the Electrochemical Intercalation of Asymmetric Fluorosulfonyl-(trifluoromethanesulfonyl) imide Anions into Graphite. Electrochimica Acta, 2014, 130, 625-633.	5.2	92

#	Article	IF	CITATIONS
127	Investigation of PF ₆ ^{â^`} and TFSI ^{â^`} anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 25306-25313.	2.8	138
128	One-step synthesis of novel mesoporous three-dimensional GeO ₂ and its lithium storage properties. Journal of Materials Chemistry A, 2014, 2, 17545-17550.	10.3	41
129	Reversible Storage of Lithium in Three-Dimensional Macroporous Germanium. Chemistry of Materials, 2014, 26, 5683-5688.	6.7	83
130	Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte. Energy and Environmental Science, 2014, 7, 3412-3423.	30.8	335
131	X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite forÂdual-ion cells. Journal of Power Sources, 2013, 239, 563-571.	7.8	197
132	LiTFSI Stability in Water and Its Possible Use in Aqueous Lithium-Ion Batteries: pH Dependency, Electrochemical Window and Temperature Stability. Journal of the Electrochemical Society, 2013, 160, A1694-A1700.	2.9	80
133	Electrochemical Intercalation of Bis(Trifluoromethanesulfonyl) Imide Anion into Various Graphites for Dual-Ion Cells. ECS Transactions, 2013, 50, 59-68.	0.5	46
134	Influence of Graphite Characteristics on the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide Anions into a Graphite-Based Cathode. Journal of the Electrochemical Society, 2013, 160, A1979-A1991.	2.9	114
135	Challenges and Opportunities of Dual-Graphite Cells Based On Ionic Liquid Electrolytes. ECS Meeting Abstracts, 2013, , .	0.0	0
136	Anodic Dissolution Suppression of the Aluminum Current Collector in High Voltage Stable Electrolytes Containing Lithium Imide Salts. ECS Meeting Abstracts, 2013, , .	0.0	0
137	Enhanced Electrochemical Performance of Graphite Anodes for Lithium-Ion Batteries by Dry Coating with Hydrophobic Fumed Silica. Journal of the Electrochemical Society, 2012, 159, A1849-A1855.	2.9	19
138	Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells. Journal of the Electrochemical Society, 2012, 159, A1755-A1765.	2.9	274
139	Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes. Zeitschrift Fur Physikalische Chemie, 2012, 226, 391-407.	2.8	108
140	The influence of activated carbon on the performance of lithium iron phosphate based electrodes. Electrochimica Acta, 2012, 76, 130-136.	5.2	40
141	Influence of graphite surface modifications on the ratio of basal plane to "non-basal plane―surface area and on the anode performance in lithium ion batteries. Journal of Power Sources, 2012, 200, 83-91.	7.8	147
142	Improved Capacity Retention for a Disordered Rocksalt Cathode via Solvate Ionic Liquid Electrolytes. Batteries and Supercaps, 0, , .	4.7	2
143	Suppressing Electrode Crosstalk and Prolonging Cycle Life in Highâ€Voltage Li Ion Batteries: Pivotal Role of Fluorophosphates in Electrolytes. ChemElectroChem, 0, , .	3.4	8