Angel Goni-Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3399784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Research, 2015, 43, D1183-D1189.	14.5	195
2	SynBioHub: A Standards-Enabled Design Repository for Synthetic Biology. ACS Synthetic Biology, 2018, 7, 682-688.	3.8	112
3	Pathways to cellular supremacy in biocomputing. Nature Communications, 2019, 10, 5250.	12.8	88
4	SEVA 3.0: an update of the Standard European Vector Architecture for enabling portability of genetic constructs among diverse bacterial hosts. Nucleic Acids Research, 2020, 48, D1164-D1170.	14.5	82
5	The Glycerol-Dependent Metabolic Persistence of Pseudomonas putida KT2440 Reflects the Regulatory Logic of the GlpR Repressor. MBio, 2015, 6, .	4.1	62
6	Multicellular Computing Using Conjugation for Wiring. PLoS ONE, 2013, 8, e65986.	2.5	61
7	Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus. ELife, 2017, 6, .	6.0	59
8	A reconfigurable NAND/NOR genetic logic gate. BMC Systems Biology, 2012, 6, 126.	3.0	50
9	The long journey towards standards for engineering biosystems. EMBO Reports, 2020, 21, e50521.	4.5	46
10	Deconvolution of Gene Expression Noise into Spatial Dynamics of Transcription Factor–Promoter Interplay. ACS Synthetic Biology, 2017, 6, 1359-1369.	3.8	39
11	Contextual dependencies expand the re-usability of genetic inverters. Nature Communications, 2021, 12, 355.	12.8	35
12	High-Performance Biocomputing in Synthetic Biology–Integrated Transcriptional and Metabolic Circuits. Frontiers in Bioengineering and Biotechnology, 2019, 7, 40.	4.1	34
13	Digitalizing heterologous gene expression in Gramâ€negative bacteria with a portable ON/OFF module. Molecular Systems Biology, 2019, 15, e8777.	7.2	33
14	An Implementation-Focused Bio/Algorithmic Workflow for Synthetic Biology. ACS Synthetic Biology, 2016, 5, 1127-1135.	3.8	31
15	Communicating Structure and Function in Synthetic Biology Diagrams. ACS Synthetic Biology, 2019, 8, 1818-1825.	3.8	30
16	A Metabolic Widget Adjusts the Phosphoenolpyruvate-Dependent Fructose Influx in Pseudomonas putida. MSystems, 2016, 1, .	3.8	28
17	Cellular Computing and Synthetic Biology. Natural Computing Series, 2018, , 93-110.	2.2	28
18	Physical Forces Shape Group Identity of Swimming Pseudomonas putida Cells. Frontiers in Microbiology, 2016, 7, 1437.	3.5	26

ANGEL GONI-MORENO

#	Article	IF	CITATIONS
19	Enabling the Advanced Bioeconomy through Public Policy Supporting Biofoundries and Engineering Biology. Trends in Biotechnology, 2019, 37, 917-920.	9.3	26
20	Biocircuit design through engineering bacterial logic gates. Natural Computing, 2011, 10, 119-127.	3.0	23
21	Fast biofoundries: coping with the challenges of biomanufacturing. Trends in Biotechnology, 2022, 40, 831-842.	9.3	20
22	DiSCUS: A Simulation Platform for Conjugation Computing. Lecture Notes in Computer Science, 2015, , 181-191.	1.3	18
23	Continuous computation in engineered gene circuits. BioSystems, 2012, 109, 52-56.	2.0	16
24	CellShape: A userâ€friendly image analysis tool for quantitative visualization of bacterial cell factories inside. Biotechnology Journal, 2017, 12, 1600323.	3.5	15
25	Spatial organization of the gene expression hardware in <i>Pseudomonas putida</i> . Environmental Microbiology, 2019, 21, 1645-1658.	3.8	14
26	A Model for the Spatiotemporal Design of Gene Regulatory Circuits. ACS Synthetic Biology, 2019, 8, 2007-2016.	3.8	13
27	SBOL-OWL: An Ontological Approach for Formal and Semantic Representation of Synthetic Biology Information. ACS Synthetic Biology, 2019, 8, 1498-1514.	3.8	12
28	Automated design and implementation of a NOR gate in Pseudomonas putida. Synthetic Biology, 2021, 6, ysab024.	2.2	12
29	A Standardized Inverter Package Borne by Broad Host Range Plasmids for Genetic Circuit Design in Gram-Negative Bacteria. ACS Synthetic Biology, 2021, 10, 213-217.	3.8	9
30	Model for a population-based microbial oscillator. BioSystems, 2011, 105, 286-294.	2.0	7
31	Futureâ€proofing synthetic biology: educating the next generation. Engineering Biology, 2019, 3, 25-31.	1.8	7
32	ShortBOL: A Language for Scripting Designs for Engineered Biological Systems Using Synthetic Biology Open Language (SBOL). ACS Synthetic Biology, 2020, 9, 962-966.	3.8	7
33	Modelling co-translational dimerization for programmable nonlinearity in synthetic biology. Journal of the Royal Society Interface, 2020, 17, 20200561.	3.4	6
34	On genetic logic circuits: forcing digital electronics standards?. Memetic Computing, 2014, 6, 149-155.	4.0	5
35	Dynamical Task Switching in Cellular Computers. Life, 2019, 9, 14.	2.4	5
36	Subcellular Architecture of the <i>xyl</i> Gene Expression Flow of the TOL Catabolic Plasmid of Pseudomonas putida mt-2. MBio, 2021, 12, .	4.1	3

#	Article	IF	CITATIONS
37	Towards Low-Carbon Conferencing: Acceptance of Virtual Conferencing Solutions and Other Sustainability Measures in the ALIFE Community. , 2019, , .		3
38	Bio-Algorithmic Workflows for Standardized Synthetic Biology Constructs. Methods in Molecular Biology, 2018, 1772, 363-372.	0.9	1
39	Capturing Multicellular System Designs Using Synthetic Biology Open Language (SBOL). ACS Synthetic Biology, 2020, 9, 2410-2417.	3.8	1
40	Artificial Life in a Challenged World. , 2019, , .		0