Richard J Wheatley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3399578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gaussian process models of potential energy surfaces with boundary optimization. Journal of Chemical Physics, 2021, 155, 144106.	1.2	8
2	Enhanced doping effects of multielement on anisotropic thermal expansion in ZrO ₂ with new compositions. Journal of the American Ceramic Society, 2020, 103, 5881-5890.	1.9	17
3	Cluster integrals and virial coefficients for realistic molecular models. Physical Review E, 2020, 101, 051301.	0.8	9
4	Simulation of the Raman spectroscopy of multi-layered carbon nanomaterials. Physical Chemistry Chemical Physics, 2018, 20, 28001-28010.	1.3	8
5	Active learning in Gaussian process interpolation of potential energy surfaces. Journal of Chemical Physics, 2018, 149, 174114.	1.2	44
6	An empirical force field for the simulation of the vibrational spectroscopy of carbon nanomaterials. Carbon, 2017, 113, 299-308.	5.4	12
7	Interpolation of intermolecular potentials using Gaussian processes. Journal of Chemical Physics, 2017, 147, 161706.	1.2	38
8	An Atomistic-Scale Study for Thermal Conductivity and Thermochemical Compatibility in (DyY)Zr2O7 Combining an Experimental Approach with Theoretical Calculation. Scientific Reports, 2016, 6, 21232.	1.6	3
9	Molecular simulation of the thermophysical properties and phase behaviour of impure CO2 relevant to CCS. Faraday Discussions, 2016, 192, 415-436.	1.6	10
10	Calculation of high-order virial coefficients for the square-well potential. Physical Review E, 2016, 94, 013301.	0.8	8
11	Reverse energy partitioning—An efficient algorithm for computing the density of states, partition functions, and free energy of solids. Journal of Chemical Physics, 2016, 145, 084116.	1.2	6
12	Investigation of La3+ Doped Yb2Sn2O7 as new thermal barrier materials. Materials and Design, 2015, 85, 423-430.	3.3	11
13	Density of States Partitioning Method for Calculating the Free Energy of Solids. Journal of Chemical Theory and Computation, 2013, 9, 165-171.	2.3	17
14	Calculation of High-Order Virial Coefficients with Applications to Hard and Soft Spheres. Physical Review Letters, 2013, 110, 200601.	2.9	77
15	Covalent bond orders and atomic anisotropies from iterated stockholder atoms. Physical Chemistry Chemical Physics, 2012, 14, 2087.	1.3	16
16	Calculation of Partition Functions and Free Energies of a Binary Mixture Using the Energy Partitioning Method: Application to Carbon Dioxide and Methane. Journal of Physical Chemistry B, 2012, 116, 4535-4542.	1.2	21
17	Molecular simulation of the binary mixture of 1–1–1–2–tetrafluoroethane and carbon dioxide. Physical Chemistry Chemical Physics, 2011, 13, 15708.	1.3	4
18	Intermolecular potential energy surface and second virial coefficients for the water–CO2 dimer. Journal of Chemical Physics, 2011, 134, 134309.	1.2	29

#	Article	IF	CITATIONS
19	Rapid calculation of partition functions and free energies of fluids. Journal of Chemical Physics, 2011, 135, 174105.	1.2	27
20	First principles predictions of thermophysical properties of refrigerant mixtures. Journal of Chemical Physics, 2011, 134, 114518.	1.2	5
21	First principles models of the interactions of methane and carbon dioxide. Fluid Phase Equilibria, 2010, 290, 48-54.	1.4	18
22	Gibbs Ensemble Monte Carlo Simulations of Binary Mixtures of Methane, Difluoromethane, and Carbon Dioxide. Journal of Physical Chemistry B, 2010, 114, 3879-3886.	1.2	21
23	Microscopic structure of liquid 1-1-1-2-tetrafluoroethane (R134a) from Monte Carlo simulation. Physical Chemistry Chemical Physics, 2010, 12, 13266.	1.3	11
24	Atomic Polarizabilities and Dispersion Energy Coefficients. , 2009, , .		0
25	Intermolecular potential energy surface and second virial coefficients for the nonrigid water-CO dimer. Journal of Chemical Physics, 2009, 131, 154305.	1.2	24
26	Additive and nonadditive models of vapor-liquid equilibrium in CO2 from first principles. Journal of Chemical Physics, 2009, 130, 034110.	1.2	33
27	Intermolecular potential and ab initio spectroscopy of the Ne–HF complex. Chemical Physics Letters, 2009, 468, 290-293.	1.2	1
28	Atomic charge densities generated using an iterative stockholder procedure. Journal of Chemical Physics, 2009, 131, 144101.	1.2	83
29	Timeâ€dependent coupledâ€cluster calculations of polarizabilities and dispersion energy coefficients. Journal of Computational Chemistry, 2008, 29, 445-450.	1.5	25
30	The Specific Work of Flow as a Criterion for Orientation in Polymer Crystallization. Macromolecules, 2008, 41, 1901-1904.	2.2	185
31	Redefining the atom: atomic charge densities produced by an iterative stockholder approach. Chemical Communications, 2008, , 5909.	2.2	111
32	Local polarizabilities and dispersion energy coefficients. Molecular Physics, 2008, 106, 1545-1556.	0.8	18
33	The water-oxygen dimer: First-principles calculation of an extrapolated potential energy surface and second virial coefficients. Journal of Chemical Physics, 2007, 127, 074303.	1.2	18
34	Blueshift and intramolecular tunneling of NH3 umbrella mode in Hen4 clusters. Journal of Chemical Physics, 2007, 127, 194303.	1.2	14
35	First-Principles Calculation of Local Atomic Polarizabilities. Journal of Physical Chemistry A, 2007, 111, 11141-11146.	1.1	34
36	Intermolecular potential and second virial coefficient of the water-nitrogen complex. Journal of Chemical Physics, 2007, 126, 094305.	1.2	44

#	Article	IF	CITATIONS
37	Calculating intermolecular potentials with SIMPER: the water–nitrogen and water–oxygen interactions, dispersion energy coefficients, and preliminary results for larger molecules. International Reviews in Physical Chemistry, 2007, 26, 449-485.	0.9	8
38	A reliable new three-dimensional potential energy surface for H2–Kr. Journal of Chemical Physics, 2005, 122, 084321.	1.2	41
39	Density functional theory of liquid crystals and surface anchoring. Physical Review E, 2005, 72, 061706.	0.8	16
40	Electronic spectroscopy of the deuterated isotopomers of the NOâ^™methane molecular complex. Journal of Chemical Physics, 2005, 123, 204305.	1.2	14
41	Inverse Power Potentials:Â Virial Coefficients and a General Equation of State. Journal of Physical Chemistry B, 2005, 109, 7463-7467.	1.2	22
42	Density profile and order parameter of a hard ellipsoidal fluid confined to a slit. Journal of Physics Condensed Matter, 2005, 17, 5625-5634.	0.7	17
43	Extrapolation methods and scaled perturbation theory for determining intermolecular potential energy surfaces. International Journal of Quantum Chemistry, 2004, 96, 537-546.	1.0	5
44	Ab initio spectroscopy of Van der Waals molecules: a comparison of three different theoretical methods applied to NeHF and NeDF. Chemical Physics Letters, 2004, 393, 70-75.	1.2	1
45	Intermolecular potential energy extrapolation method for weakly bound systems: Ar2, Ar–H2and Ar–HF dimers. Molecular Physics, 2004, 102, 567-577.	0.8	8
46	Intermolecular potentials from supermolecule and monomer calculations. International Reviews in Physical Chemistry, 2004, 23, 151-185.	0.9	22
47	Intermolecular potential and second virial coefficient of the water–hydrogen complex. Journal of Chemical Physics, 2004, 120, 710-720.	1.2	82
48	An environmental pseudopotential approach to molecular interactions: Implementation in MOLPRO. Journal of Computational Chemistry, 2003, 24, 2075-2082.	1.5	13
49	Atomic representation of the dispersion interaction energy. Physical Chemistry Chemical Physics, 2003, 5, 801-807.	1.3	8
50	Intermolecular potential and second virial coefficient of the water–helium complex. Journal of Chemical Physics, 2002, 116, 1397-1405.	1.2	59
51	Intermolecular potentials and second virial coefficients of the water–neon and water–argon complexes. Journal of Chemical Physics, 2002, 117, 7169-7179.	1.2	62
52	Extrapolation of intermolecular interaction energies in weakly bound Van der Waals complexes. Journal of Computational Methods in Sciences and Engineering, 2002, 2, 391-397.	0.1	6
53	Scaled perturbation theory for weak intermolecular forces: the helium dimer. Computational and Theoretical Chemistry, 2002, 591, 67-76.	1.5	10
54	Short-Range Contributions to the Polarization of Cations. Journal of Physical Chemistry A, 2001, 105, 4136-4142.	1.1	26

#	Article	IF	CITATIONS
55	Overlap-model and ab initio cluster calculations of ion properties in distorted environments. Chemical Physics Letters, 2001, 333, 403-412.	1.2	35
56	Intermolecular potential for the interaction of helium with ammonia. Journal of Chemical Physics, 2001, 114, 8836-8843.	1.2	38
57	Application of the overlap model to calculating correlated exchange energies. Chemical Physics Letters, 2000, 326, 263-268.	1.2	20
58	Flexible multipole models for hydrogen fluoride. Physical Chemistry Chemical Physics, 2000, 2, 1631-1638.	1.3	2
59	Using Computer Assisted Learning to Teach Molecular Reaction Dynamics. Journal of Chemical Education, 2000, 77, 407.	1.1	5
60	On the virial series for hard-sphere mixtures. Journal of Chemical Physics, 1999, 111, 5455-5460.	1.2	20
61	The sixth virial coefficient of hard disc mixtures. Molecular Physics, 1999, 96, 1805-1811.	0.8	11
62	On the non-additive second-order Coulomb energy for H ₃ in C _{2v} geometries. Molecular Physics, 1999, 96, 53-60.	0.8	1
63	Overlap model and ab initio cluster calculations of polarisabilities of ions in solids. Chemical Physics Letters, 1999, 314, 158-167.	1.2	19
64	The sixth virial coefficient of hard disc mixtures. , 1999, .		1
65	An overlap model for exchange-induction: application to alkali halides. Chemical Physics Letters, 1998, 294, 487-492.	1.2	15
66	RESEARCH NOTE Fifth virial coefficient of hard sphere mixtures. Molecular Physics, 1998, 94, 877-879.	0.8	8
67	Structure and vibrational spectra of methanol clusters from a new potential model. Journal of Chemical Physics, 1998, 108, 20-32.	1.2	101
68	Use of molecular overlap to predict intermolecular repulsion in N H-O hydrogen bonds. Molecular Physics, 1998, 95, 525-537.	0.8	4
69	Vibrational predissociation spectra of size selected hydrazine clusters: Experiment and calculations. Journal of Chemical Physics, 1997, 106, 6806-6812.	1.2	17
70	A new intermolecular potential for hydrazine clusters: Structures and spectra. Journal of Chemical Physics, 1997, 106, 6795-6805.	1.2	19
71	The intermolecular potential energy surface for CO2–Ar: Fitting to highâ€resolution spectroscopy of Van der Waals complexes and second virial coefficients. Journal of Chemical Physics, 1996, 105, 9130-9140.	1.2	80
72	Dispersion and induction energy damping functions, and their scale with interspecies distance, for the interaction of Hâ~' with H, He and Li atoms. Chemical Physics, 1996, 203, 209-221.	0.9	2

#	Article	IF	CITATIONS
73	A reliable new potential energy surface for H2–Ar. Journal of Chemical Physics, 1996, 105, 2639-2653.	1.2	71
74	The solvation of sodium ions in water clusters: intermolecular potentials for Na+-H2O and H2O-H2O. Molecular Physics, 1996, 87, 1083-1116.	0.8	28
75	The solvation of sodium ions in water clusters: intermolecular potentials for Na+-H2O and H2O-H2O. Molecular Physics, 1996, 87, 1083-1116.	0.8	8
76	A systematic model potential for Li+-H2O. Molecular Physics, 1995, 84, 879-898.	0.8	11
77	The non-additive exchange energies of H3and He3. Molecular Physics, 1995, 84, 899-910.	0.8	5
78	Induction and dispersion damping functions, and their relative scale with interspecies distance, for (H+, He+, Li+)-(H, He, Li) interactions. Chemical Physics, 1994, 179, 341-364.	0.9	19
79	Gaussian multipoles in practice: Electrostatic energies for intermolecular potentials. Journal of Computational Chemistry, 1994, 15, 1187-1198.	1.5	77
80	A new distributed multipole procedure for linear molecules. Chemical Physics Letters, 1993, 208, 159-166.	1.2	7
81	Dispersion energy damping functions, and their relative scale with interatomic separation, for (H, He,) Tj ETQq1 1	0,784314	l rgBT /Overle
82	On the relationship between first-order exchange and Coulomb interaction energies for closed shell atoms and molecules. Molecular Physics, 1993, 79, 253-275.	0.8	25
83	Gaussian multipole functions for describing molecular charge distributions. Molecular Physics, 1993, 79, 597-610.	0.8	37
84	A systematic intermolecular potential method applied to chlorine. Molecular Physics, 1990, 71, 1381-1404.	0.8	56
85	An overlap model for estimating the anisotropy of repulsion. Molecular Physics, 1990, 69, 507-533.	0.8	103
86	Machine learning for non-additive intermolecular potentials: quantum chemistry to first-principles predictions. Chemical Communications, 0, , .	2.2	7