Suzanne Ostrand-Rosenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3399193/publications.pdf Version: 2024-02-01

		26567	22764
120	24,564	56	112
papers	citations	h-index	g-index
122	122	122	26671
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 2018, 24, 541-550.	15.2	3,421
2	Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 2012, 12, 253-268.	10.6	3,002
3	Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications, 2016, 7, 12150.	5.8	2,076
4	Myeloid-Derived Suppressor Cells: Linking Inflammation and Cancer. Journal of Immunology, 2009, 182, 4499-4506.	0.4	1,524
5	Myeloid-Derived Suppressor Cells Inhibit T-Cell Activation by Depleting Cystine and Cysteine. Cancer Research, 2010, 70, 68-77.	0.4	748
6	Cross-Talk between Myeloid-Derived Suppressor Cells and Macrophages Subverts Tumor Immunity toward a Type 2 Response. Journal of Immunology, 2007, 179, 977-983.	0.4	722
7	Prostaglandin E2 Promotes Tumor Progression by Inducing Myeloid-Derived Suppressor Cells. Cancer Research, 2007, 67, 4507-4513.	0.4	661
8	The Terminology Issue for Myeloid-Derived Suppressor Cells. Cancer Research, 2007, 67, 425-425.	0.4	649
9	Proinflammatory S100 Proteins Regulate the Accumulation of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2008, 181, 4666-4675.	0.4	634
10	Reduced Inflammation in the Tumor Microenvironment Delays the Accumulation of Myeloid-Derived Suppressor Cells and Limits Tumor Progression. Cancer Research, 2007, 67, 10019-10026.	0.4	574
11	Mouse 4T1 Breast Tumor Model. Current Protocols in Immunology, 2000, 39, Unit 20.2.	3.6	559
12	Inflammation Induces Myeloid-Derived Suppressor Cells that Facilitate Tumor Progression. Journal of Immunology, 2006, 176, 284-290.	0.4	497
13	Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunology, Immunotherapy, 2010, 59, 1593-1600.	2.0	470
14	Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Seminars in Cancer Biology, 2012, 22, 275-281.	4.3	468
15	Myeloid-Derived Suppressor Cells. Advances in Cancer Research, 2015, 128, 95-139.	1.9	419
16	Reduction of Myeloid-Derived Suppressor Cells and Induction of M1 Macrophages Facilitate the Rejection of Established Metastatic Disease. Journal of Immunology, 2005, 174, 636-645.	0.4	411
17	Immune surveillance: a balance between protumor and antitumor immunity. Current Opinion in Genetics and Development, 2008, 18, 11-18.	1.5	404
18	Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment. Journal of Immunology, 2018, 200, 422-431.	0.4	404

#	Article	IF	CITATIONS
19	Myeloid-Derived Suppressor Cells Down-Regulate L-Selectin Expression on CD4+ and CD8+ T Cells. Journal of Immunology, 2009, 183, 937-944.	0.4	349
20	Surgical Removal of Primary Tumor Reverses Tumor-Induced Immunosuppression Despite the Presence of Metastatic Disease. Cancer Research, 2004, 64, 2205-2211.	0.4	320
21	IDO Is a Nodal Pathogenic Driver of Lung Cancer and Metastasis Development. Cancer Discovery, 2012, 2, 722-735.	7.7	280
22	Interleukin-13–regulated M2 Macrophages in Combination with Myeloid Suppressor Cells Block Immune Surveillance against Metastasis. Cancer Research, 2005, 65, 11743-11751.	0.4	279
23	ILâ€1β regulates a novel myeloidâ€derived suppressor cell subset that impairs NK cell development and function. European Journal of Immunology, 2010, 40, 3347-3357.	1.6	264
24	A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. Journal of Experimental Medicine, 2005, 202, 1627-1633.	4.2	262
25	Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. Journal of Leukocyte Biology, 2009, 85, 996-1004.	1.5	230
26	HMGB1 Enhances Immune Suppression by Facilitating the Differentiation and Suppressive Activity of Myeloid-Derived Suppressor Cells. Cancer Research, 2014, 74, 5723-5733.	0.4	189
27	Major histocompatibility complex class II+B7-1+ tumor cells are potent vaccines for stimulating tumor rejection in tumor-bearing mice Journal of Experimental Medicine, 1995, 181, 619-629.	4.2	187
28	The Programmed Death-1 Immune-Suppressive Pathway: Barrier to Antitumor Immunity. Journal of Immunology, 2014, 193, 3835-3841.	0.4	178
29	Major histocompatibility complex class II-transfected tumor cells present endogenous antigen and are potent inducers of tumor-specific immunity. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6886-6891.	3.3	155
30	Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors. Journal of Leukocyte Biology, 2014, 96, 1109-1118.	1.5	150
31	Gr-1+ CD11b+ Myeloid-derived Suppressor Cells Suppress Inflammation and Promote Insulin Sensitivity in Obesity. Journal of Biological Chemistry, 2011, 286, 23591-23599.	1.6	140
32	Myeloid-derived suppressor cells express the death receptor Fas and apoptose in response to T cell–expressed FasL. Blood, 2011, 117, 5381-5390.	0.6	140
33	Exosomes from Myeloid-Derived Suppressor Cells Carry Biologically Active Proteins. Journal of Proteome Research, 2014, 13, 836-843.	1.8	137
34	Cutting Edge: STAT6-Deficient Mice Have Enhanced Tumor Immunity to Primary and Metastatic Mammary Carcinoma. Journal of Immunology, 2000, 165, 6015-6019.	0.4	136
35	Frontline Science: High fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells. Journal of Leukocyte Biology, 2018, 103, 395-407.	1.5	129
36	Dendritic Cells Cross-Dressed with Peptide MHC Class I Complexes Prime CD8+ T Cells. Journal of Immunology, 2006, 177, 6018-6024.	0.4	125

#	Article	IF	CITATIONS
37	Tumor immunotherapy: the tumor cell as an antigen-presenting cell. Current Opinion in Immunology, 1994, 6, 722-727.	2.4	117
38	Animal models of tumor immunity, immunotherapy and cancer vaccines. Current Opinion in Immunology, 2004, 16, 143-150.	2.4	110
39	Resistance to Metastatic Disease in STAT6-Deficient Mice Requires Hemopoietic and Nonhemopoietic Cells and Is IFN-Î ³ Dependent. Journal of Immunology, 2002, 169, 5796-5804.	0.4	109
40	Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression. Cancer Immunology, Immunotherapy, 2005, 54, 1137-1142.	2.0	108
41	Lung cancer patients' CD4+ T cells are activated in vitro by MHC II cell-based vaccines despite the presence of myeloid-derived suppressor cells. Cancer Immunology, Immunotherapy, 2008, 57, 1493-1504.	2.0	97
42	Myeloid-Derived Suppressor Cells: Not Only in Tumor Immunity. Frontiers in Immunology, 2019, 10, 1099.	2.2	96
43	Myeloid-Derived Suppressor Cell Survival and Function Are Regulated by the Transcription Factor Nrf2. Journal of Immunology, 2016, 196, 3470-3478.	0.4	90
44	Myeloid derived-suppressor cells: their role in cancer and obesity. Current Opinion in Immunology, 2018, 51, 68-75.	2.4	90
45	Differential Content of Proteins, mRNAs, and miRNAs Suggests that MDSC and Their Exosomes May Mediate Distinct Immune Suppressive Functions. Journal of Proteome Research, 2018, 17, 486-498.	1.8	84
46	Tumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodes. ELife, 2016, 5, .	2.8	81
47	Tumor-Specific CD4+ T Cells Are Activated by "Cross-Dressed―Dendritic Cells Presenting Peptide-MHC Class II Complexes Acquired from Cell-Based Cancer Vaccines. Journal of Immunology, 2006, 176, 1447-1455.	0.4	79
48	Frontline Science: Myeloid-derived suppressor cells (MDSCs) facilitate maternal–fetal tolerance in mice. Journal of Leukocyte Biology, 2017, 101, 1091-1101.	1.5	78
49	CD4+T Lymphocytes: A Critical Component of Antitumor Immunity. Cancer Investigation, 2005, 23, 413-419.	0.6	77
50	Tumor Cell Programmed Death Ligand 1-Mediated T Cell Suppression Is Overcome by Coexpression of CD80. Journal of Immunology, 2011, 186, 6822-6829.	0.4	77
51	Soluble CD80 Restores T Cell Activation and Overcomes Tumor Cell Programmed Death Ligand 1–Mediated Immune Suppression. Journal of Immunology, 2013, 191, 2829-2836.	0.4	69
52	Tumorâ€induced myeloidâ€derived suppressor cell function is independent of <scp>IFN</scp> â€Î³ and <scp>IL</scp> â€4 <scp>R</scp> î±. European Journal of Immunology, 2012, 42, 2052-2059.	1.6	66
53	Regulating the suppressors: apoptosis and inflammation govern the survival of tumor-induced myeloid-derived suppressor cells (MDSC). Cancer Immunology, Immunotherapy, 2012, 61, 1319-1325.	2.0	65
54	Tumor Cells Present MHC Class II-Restricted Nuclear and Mitochondrial Antigens and Are the Predominant Antigen Presenting Cells In Vivo. Journal of Immunology, 2000, 165, 5451-5461.	0.4	64

#	Article	IF	CITATIONS
55	Immunotherapy with vaccines combining MHC class II/CD80 + tumor cells with interleukin-12 reduces established metastatic disease and stimulates immune effectors and monokine induced by interferon γ. Cancer Immunology, Immunotherapy, 2000, 49, 34-45.	2.0	60
56	Proteomic Pathway Analysis Reveals Inflammation Increases Myeloid-Derived Suppressor Cell Resistance to Apoptosis. Molecular and Cellular Proteomics, 2011, 10, M110.002980.	2.5	60
57	High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy. Journal of Leukocyte Biology, 2016, 100, 463-470.	1.5	57
58	Surface Glycoproteins of Exosomes Shed by Myeloid-Derived Suppressor Cells Contribute to Function. Journal of Proteome Research, 2017, 16, 238-246.	1.8	57
59	Antagonism of the prostaglandin E receptor EP4 inhibits metastasis and enhances NK function. Breast Cancer Research and Treatment, 2009, 117, 235-242.	1.1	55
60	Myeloid-derived suppressor cell function is reduced by Withaferin A, a potent and abundant component of Withania somnifera root extract. Cancer Immunology, Immunotherapy, 2013, 62, 1663-1673.	2.0	53
61	Radiotherapy Both Promotes and Inhibits Myeloid-Derived Suppressor Cell Function: Novel Strategies for Preventing the Tumor-Protective Effects of Radiotherapy. Frontiers in Oncology, 2019, 9, 215.	1.3	51
62	Cell-based vaccines for the stimulation of immunity to metastatic cancers. Immunological Reviews, 1999, 170, 101-114.	2.8	48
63	Activation of Tumor-specific CD4+ T Lymphocytes by Major Histocompatibility Complex Class II Tumor Cell Vaccines. Cancer Research, 2004, 64, 1867-1874.	0.4	47
64	Cancer and complement. Nature Biotechnology, 2008, 26, 1348-1349.	9.4	47
65	Survival of the fittest: how myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. Cancer Immunology, Immunotherapy, 2020, 69, 215-221.	2.0	47
66	Tumor antigen presentation: changing the rules. Cancer Immunology, Immunotherapy, 1998, 46, 70-74.	2.0	44
67	Tumor Cells Transduced with the MHC Class II Transactivator and CD80 Activate Tumor-Specific CD4+ T Cells Whether or Not They Are Silenced for Invariant Chain. Cancer Research, 2006, 66, 1147-1154.	0.4	44
68	Ubiquitinated Proteins in Exosomes Secreted by Myeloid-Derived Suppressor Cells. Journal of Proteome Research, 2014, 13, 5965-5972.	1.8	44
69	Interferon-gamma-dependent phagocytic cells are a critical component of innate immunity against metastatic mammary carcinoma. Cancer Research, 2002, 62, 4406-12.	0.4	43
70	Tolerance and immune suppression in the tumor microenvironment. Cellular Immunology, 2016, 299, 23-29.	1.4	41
71	CD3xPDL1 bi-specific T cell engager (BiTE) simultaneously activates T cells and NKT cells, kills PDL1+ tumor cells, and extends the survival of tumor-bearing humanized mice. Oncotarget, 2017, 8, 57964-57980.	0.8	41
72	A Soluble Form of CD80 Enhances Antitumor Immunity by Neutralizing Programmed Death Ligand-1 and Simultaneously Providing Costimulation. Cancer Immunology Research, 2014, 2, 610-615.	1.6	40

#	Article	IF	CITATIONS
73	MHC Class II-Transfected Tumor Cells Induce Long-Term Tumor-Specific Immunity in Autologous Mice. Cellular Immunology, 1994, 155, 123-133.	1.4	38
74	Intracytoplasmic domains of MHC class II molecules are essential for lipid-raft-dependent signaling. Journal of Cell Science, 2003, 116, 2565-2575.	1.2	37
75	The absence of invariant chain in MHC II cancer vaccines enhances the activation of tumor-reactive type 1 CD4+ T lymphocytes. Cancer Immunology, Immunotherapy, 2008, 57, 389-398.	2.0	37
76	CD4+ T lymphocytes: a critical component of antitumor immunity. Cancer Investigation, 2005, 23, 413-9.	0.6	36
77	Presentation of Endogenously Synthesized MHC Class II-Restricted Epitopes by MHC Class II Cancer Vaccines Is Independent of Transporter Associated with Ag Processing and the Proteasome. Journal of Immunology, 2005, 174, 1811-1819.	0.4	35
78	Class II-Transfected Tumor Cells Directly Present Endogenous Antigen to CD4+ T Cells In Vitro and Are APCs for Tumor-Encoded Antigens In Vivo. Journal of Immunotherapy, 1998, 21, 218-224.	1.2	34
79	MHC Class II–Transduced Tumor Cells Originating in the Immune-Privileged Eye Prime and Boost CD4+ T Lymphocytes that Cross-react with Primary and Metastatic Uveal Melanoma Cells. Cancer Research, 2007, 67, 4499-4506.	0.4	34
80	Top–down analysis of low mass proteins in exosomes shed by murine myeloid-derived suppressor cells. International Journal of Mass Spectrometry, 2015, 378, 264-269.	0.7	34
81	Signal transducer and activator of transcription 6 (Stat6) and CD1: inhibitors of immunosurveillance against primary tumors and metastatic disease. Cancer Immunology, Immunotherapy, 2004, 53, 86-91.	2.0	33
82	TLR5 Ligand–Secreting T Cells Reshape the Tumor Microenvironment and Enhance Antitumor Activity. Cancer Research, 2015, 75, 1959-1971.	0.4	33
83	CD4 T Lymphocytes: A Critical Component of Antitumor Immunity. Cancer Investigation, 2005, 23, 413-419.	0.6	32
84	MDSCs, ageing and inflammageing. Cellular Immunology, 2021, 362, 104297.	1.4	30
85	Soluble CD80 Protein Delays Tumor Growth and Promotes Tumor-Infiltrating Lymphocytes. Cancer Immunology Research, 2018, 6, 59-68.	1.6	26
86	Differential Regulation of T-cell Immunity and Tolerance by Stromal Laminin Expressed in the Lymph Node. Transplantation, 2019, 103, 2075-2089.	0.5	26
87	Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. Journal of Clinical Investigation, 2020, 130, 2789-2799.	3.9	26
88	MHC Class II Presentation of Endogenous Tumor Antigen by Cellular Vaccines Depends on the Endocytic Pathway but not H2-M. Traffic, 2000, 1, 152-160.	1.3	25
89	Uveal melanoma cell-based vaccines express MHC II molecules that traffic via the endocytic and secretory pathways and activate CD8+ cytotoxic, tumor-specific T cells. Cancer Immunology, Immunotherapy, 2010, 59, 103-112.	2.0	22
90	Class II-associated invariant chain peptide down-modulation enhances the immunogenicity of myeloid leukemic blasts resulting in increased CD4+ T-cell responses. Haematologica, 2010, 95, 485-493.	1.7	20

#	Article	IF	CITATIONS
91	MHC II lung cancer vaccines prime and boost tumorâ€specific CD4 ⁺ T cells that crossâ€react with multiple histologic subtypes of nonsmall cell lung cancer cells. International Journal of Cancer, 2010, 127, 2612-2621.	2.3	18
92	Novel strategies for inhibiting PD-1 pathway-mediated immune suppression while simultaneously delivering activating signals to tumor-reactive T cells. Cancer Immunology, Immunotherapy, 2015, 64, 1287-1293.	2.0	18
93	Evaluation of Spectral Counting for Relative Quantitation of Proteoforms in Top-Down Proteomics. Analytical Chemistry, 2016, 88, 10900-10907.	3.2	18
94	Molecular cargo in myeloid-derived suppressor cells and their exosomes. Cellular Immunology, 2021, 359, 104258.	1.4	17
95	Myeloid-Derived Suppressor Cells: Facilitators of Cancer and Obesity-Induced Cancer. Annual Review of Cancer Biology, 2021, 5, 17-38.	2.3	17
96	Alternative li-independent antigen-processing pathway in leukemic blasts involves TAP-dependent peptide loading of HLA class II complexes. Cancer Immunology, Immunotherapy, 2010, 59, 1825-1838.	2.0	16
97	Major Histocompatibility Complex Class II+ Invariant Chain Negative Breast Cancer Cells Present Unique Peptides that Activate Tumor-specific T Cells from Breast Cancer Patients. Molecular and Cellular Proteomics, 2012, 11, 1457-1467.	2.5	16
98	Peptideâ€based systems analysis of inflammation induced myeloidâ€derived suppressor cells reveals diverse signaling pathways. Proteomics, 2016, 16, 1881-1888.	1.3	16
99	H2-O Inhibits Presentation of Bacterial Superantigens, but Not Endogenous Self Antigens. Journal of Immunology, 2001, 167, 1371-1378.	0.4	14
100	MHC class II and CD80 tumor cell?based vaccines are potent activators of type 1 CD4 + T lymphocytes provided they do not coexpress invariant chain. Cancer Immunology, Immunotherapy, 2004, 53, 525-532.	2.0	14
101	Top-Down Proteomic Characterization of Truncated Proteoforms. Journal of Proteome Research, 2019, 18, 4013-4019.	1.8	14
102	Ubiquitin Conjugation Probed by Inflammation in Myeloid-Derived Suppressor Cell Extracellular Vesicles. Journal of Proteome Research, 2018, 17, 315-324.	1.8	13
103	The receptor for advanced glycation endproducts (RAGE) decreases survival of tumor-bearing mice by enhancing the generation of lung metastasis-associated myeloid-derived suppressor cells. Cellular Immunology, 2021, 365, 104379.	1.4	13
104	Antagonists of Tumor-Specific Immunity: Tumor-Induced Immune Suppression and Host Genes that Co-opt the Anti-Tumor Immune Response. Breast Disease, 2004, 20, 127-135.	0.4	10
105	Immunotherapy of Established Tumor with MHC Class II and B7.1 Cell-Based Tumor Vaccines. Advances in Experimental Medicine and Biology, 1998, 451, 259-264.	0.8	10
106	402AX teratocarcinoma MHC class I antigen expression is regulated in vivo by Lyt 1, Lyt 2, and L3t4 expressing splenic T cells. Cellular Immunology, 1986, 98, 257-265.	1.4	9
107	Bovine leukocyte antigens. Animal Blood Groups and Biochemical Genetics, 1974, 5, 231-237.	0.0	9
108	Invariant Chain and the MHC Class II Cytoplasmic Domains Regulate Localization of MHC Class II Molecules to Lipid Rafts in Tumor Cell-Based Vaccines. Journal of Immunology, 2004, 172, 907-914.	0.4	8

#	Article	IF	CITATIONS
109	Chapter 7 Cell-Mediated Immune Responses to Mouse Embryonic Cells: Detection and Characterization of Embryonic Antigens. Current Topics in Developmental Biology, 1980, 14, 147-168.	1.0	7
110	Mouse Sal Sarcoma Tumor Model. Current Protocols in Immunology, 2000, 39, Unit 20.3.	3.6	6
111	Looking to the future of cancer immunotherapy: many questions to answer and many therapeutic opportunities. Cancer Immunology, Immunotherapy, 2013, 62, 1-2.	2.0	3
112	Immune Suppressive Myeloid-Derived Suppressor Cells in Cancer. , 2016, , 512-525.		3
113	Tumor-induced Myeloid-derived Suppressor Cells. , 2013, , 473-496.		2
114	Macrophages and Tumor Development. , 2008, , 131-155.		2
115	Immunologic Targets for the Gene Therapy of Cancer. , 2002, , 127-142.		2
116	Tumor-Associated Myeloid-Derived Suppressor Cells. , 2007, , 309-331.		1
117	Myeloid-derived suppressor cells: Multi-talented immune suppressive cells that can be either helpful or harmful. Cellular Immunology, 2021, 365, 104374.	1.4	1
118	Indoleamine 2,3-Dioxygenase Amino Acid Metabolism and Tumour-Associated Macrophages: Regulation in Cancer-Associated Inflammation and Immune Escape. , 2011, , 91-104.		0
119	Inflammation, Tumor Progression, and Immune Suppression. , 2013, , 177-196.		0
120	Macrophages and Tumor Development. , 2014, , 185-212.		0