
Yi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/339907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stable and Highâ€Efficiency Methylammoniumâ€Free Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905502.	21.0	131
2	A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquidâ€Đopants. Advanced Materials, 2017, 29, 1702157.	21.0	115
3	Band-bending induced passivation: high performance and stable perovskite solar cells using a perhydropoly(silazane) precursor. Energy and Environmental Science, 2020, 13, 1222-1230.	30.8	114
4	Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 12729-12734.	10.3	103
5	Trash into Treasure: δâ€FAPbI ₃ Polymorph Stabilized MAPbI ₃ Perovskite with Power Conversion Efficiency beyond 21%. Advanced Materials, 2018, 30, e1707143.	21.0	101
6	An Efficient Approach to Fabricate Airâ€Stable Perovskite Solar Cells via Addition of a Selfâ€Polymerizing Ionic Liquid. Advanced Materials, 2020, 32, e2003801.	21.0	84
7	Tetrathienoanthracene and Tetrathienylbenzene Derivatives as Holeâ€Transporting Materials for Perovskite Solar Cell. Advanced Energy Materials, 2018, 8, 1800681.	19.5	51
8	Fusing Nanowires into Thin Films: Fabrication of Gradedâ€Heterojunction Perovskite Solar Cells with Enhanced Performance. Advanced Energy Materials, 2019, 9, 1900243.	19.5	45
9	Enhanced stability of α-phase FAPbI ₃ perovskite solar cells by insertion of 2D (PEA) ₂ PbI ₄ nanosheets. Journal of Materials Chemistry A, 2020, 8, 8058-8064.	10.3	45
10	The Synergism of DMSO and Diethyl Ether for Highly Reproducible and Efficient MA _{0.5} FA _{0.5} PbI ₃ Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2001300.	19.5	33
11	A Porphyrin-Involved Benzene-1,3,5-Tricarboxamide Dendrimer (Por-BTA) as a Multifunctional Interface Material for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 14248-14257.	8.0	23
12	Greenâ€Chemistryâ€Inspired Synthesis of Cyclobutaneâ€Based Holeâ€Selective Materials for Highly Efficient Perovskite Solar Cells and Modules. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
13	Unveiling the Concentration-Dependent Grain Growth of Perovskite Films from One- and Two-Step Deposition Methods: Implications for Photovoltaic Application. ACS Applied Materials & Interfaces, 2017, 9, 25063-25066.	8.0	20
14	High-efficiency perovskite photovoltaic modules achieved via cesium doping. Chemical Engineering Journal, 2022, 431, 133713.	12.7	19
15	Hexagonal mesoporous silica islands to enhance photovoltaic performance of planar junction perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 1415-1420.	10.3	17
16	Unsymmetrical and Symmetrical Zn(II) Phthalocyanines as Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 2399-2404.	5.1	16
17	Mixed cation 2D perovskite: a novel approach for enhanced perovskite solar cell stability. Sustainable Energy and Fuels, 2022, 6, 2471-2477.	4.9	9
18	Ultraviolet Filtration Passivator for Stable High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 19459-19468.	8.0	8

YI ZHANG

#	Article	IF	CITATIONS
19	In Situ Graded Passivation via Porphyrin Derivative with Enhanced Photovoltage and Fill Factor in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	5
20	Greenâ€Chemistryâ€Inspired Synthesis of Cyclobutaneâ€Based Holeâ€Selective Materials for Highly Efficient Perovskite Solar Cells and Modules. Angewandte Chemie, 2022, 134, .	2.0	4
21	Area-Scalable Zn ₂ SnO ₄ Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Modules. ACS Applied Materials & Interfaces, 2022, 14, 23297-23306.	8.0	4