Zheng-Jun Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/339893/publications.pdf

Version: 2024-02-01

		279487		329751
81	1,690	23		37
papers	citations	h-index		g-index
			. '	
81	81	81		1801
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	3D printing of a mechanically durable superhydrophobic porous membrane for oil–water separation. Journal of Materials Chemistry A, 2017, 5, 12435-12444.	5.2	189
2	Fabrication of SERS Swab for Direct Detection of Trace Explosives in Fingerprints. ACS Applied Materials & Explosives in Fingerprints. ACS Applied Materials & Explosives in Fingerprints. ACS Applied Materials & Explosives in Fingerprints.	4.0	119
3	Applications of anodized TiO2 nanotube arrays on the removal of aqueous contaminants of emerging concern: A review. Water Research, 2020, 186 , 116327 .	5.3	84
4	Screening pesticide residues on fruit peels using portable Raman spectrometer combined with adhesive tape sampling. Food Chemistry, 2019, 295, 254-258.	4.2	72
5	Surfaceâ€enhanced Raman spectroscopy for onâ€site analysis: A review of recent developments. Luminescence, 2020, 35, 808-820.	1.5	61
6	Carbon dots in sample preparation and chromatographic separation: Recent advances and future prospects. TrAC - Trends in Analytical Chemistry, 2021, 134, 116135.	5.8	53
7	Dual functional PDMS sponge SERS substrate for the on-site detection of pesticides both on fruit surfaces and in juice. Analyst, The, 2018, 143, 2689-2695.	1.7	49
8	Co-hydrothermal carbonization of food waste-woody sawdust blend: Interaction effects on the hydrochar properties and nutrients characteristics. Bioresource Technology, 2020, 316, 123900.	4.8	45
9	Environmental pollutionÂanalysis based on the luminescent metal organic frameworks: A review. TrAC - Trends in Analytical Chemistry, 2021, 134, 116131.	5.8	45
10	Separation, identification and fast determination of organophosphate pesticide methidathion in tea leaves by thin layer chromatography–surface-enhanced Raman scattering. Analytical Methods, 2013, 5, 5560.	1.3	41
11	A silver nanoparticle embedded hydrogel as a substrate for surface contamination analysis by surface-enhanced Raman scattering. Analyst, The, 2014, 139, 5283-5289.	1.7	38
12	Like Cures like: Detoxification Effect between Alkali Metals and Sulfur over the V ₂ O ₅ /TiO ₂ deNO _{<i>x</i>} Catalyst. Environmental Science & Scie	4.6	38
13	Facile preparation of silver nanoparticle decorated chitosan cryogels for point-of-use water disinfection. Science of the Total Environment, 2018, 613-614, 1317-1323.	3.9	36
14	Detection of Buried Explosives Using a Surface-Enhanced Raman Scattering (SERS) Substrate Tailored for Miniaturized Spectrometers. ACS Sensors, 2020, 5, 2933-2939.	4.0	36
15	Flow injection kinetic spectrophotometric determination of trace amounts of Se(IV) in seawater. Talanta, 2005, 66, 1012-1017.	2.9	34
16	Co-Doped S, N-Carbon dots and its fluorescent film sensors for rapid detection of Cr (VI) and Ascorbic acid. Microchemical Journal, 2021, 167, 106284.	2.3	33
17	Facile fabrication of a large-area and cost-effective PDMS-SERS substrate by sandpaper template-assisted lithography. Analytical Methods, 2019, 11, 4917-4922.	1.3	32
18	SERS optrode as a "fishing rod―to direct pre-concentrate analytes from superhydrophobic surfaces. Chemical Communications, 2015, 51, 1965-1968.	2.2	31

#	Article	IF	Citations
19	Single point calibration for semi-quantitative screening based on an internal reference in thin layer chromatography-SERS: the case of Rhodamine B in chili oil. Analytical Methods, 2014, 6, 7218-7223.	1.3	30
20	Advances in metal-organic frameworks-based gas sensors for hazardous substances. TrAC - Trends in Analytical Chemistry, 2022, 153, 116644.	5.8	29
21	Hollow carbon nanobubbles-coated solid-phase microextraction fibers for the sensitive detection of organic pollutants. Analytica Chimica Acta, 2020, 1097, 85-93.	2.6	28
22	Rapid screening of rhodamine B in food by hydrogel solid-phase extraction coupled with direct fluorescence detection. Food Chemistry, 2020, 316, 126378.	4.2	28
23	Fluorescent and visual detection of norfloxacin in aqueous solutions with a molecularly imprinted polymer coated paper sensor. Talanta, 2020, 208, 120435.	2.9	26
24	Rapid and direct detection of illicit dyes on tainted fruit peel using a PVA hydrogel surface enhanced Raman scattering substrate. Analytical Methods, 2016, 8, 4816-4820.	1.3	22
25	Sunlight photocatalytic degradation of ofloxacin using UiO-66/wood composite photocatalysts. Chinese Chemical Letters, 2022, 33, 442-446.	4.8	22
26	Killing Two Birds with One Stone: Coating Ag NPs Embedded Filter Paper with Chitosan for Better and Durable Point-of-Use Water Disinfection. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38239-38245.	4.0	21
27	Multifunctional Flexible SERS Sensor on a Fixate Gel Pad: Capturing, Derivation, and Selective Picogram Indirect Detection of Explosive 2,2′,4,4′,6,6′-Hexanitrostilbene. ACS Sensors, 2020, 5, 3599-36	50 6 :0	21
28	Persulfate assisted hydrothermal processing of spirulina for enhanced deoxidation carbonization. Bioresource Technology, 2021, 322, 124543.	4.8	20
29	Coupling microdialysis with flow-injection chemiluminescence detection for a protein–drug interaction study. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 1412-1417.	1.4	19
30	A novel electrochemiluminescence biosensor based on the self-ECL emission of conjugated polymer dots for lead ion detection. Mikrochimica Acta, 2020, 187, 237.	2.5	19
31	An aggregation-induced emission copper nanoclusters fluorescence probe for the sensitive detection of tetracycline. Microchemical Journal, 2022, 180, 107570.	2.3	19
32	Surface enhanced Raman scattering fiber optic sensor as an ion selective optrode: the example of Cd ²⁺ detection. RSC Advances, 2014, 4, 64683-64687.	1.7	17
33	Facile fabrication of 3D TiO2 - graphene aerogel composite with enhanced adsorption and solar light-driven photocatalytic activity. Ceramics International, 2021, 47, 14290-14300.	2.3	17
34	Self-Healing 3D Liquid Freestanding Plasmonic Nanoparticle Membrane for Reproducible Surface-Enhanced Raman Spectroscopy Sensing. ACS Applied Nano Materials, 2020, 3, 10014-10021.	2.4	16
35	Sensitive and visual detection of p-phenylenediamine by using dialdehyde cellulose membrane as a solid matrix. Analytica Chimica Acta, 2020, 1139, 189-197.	2.6	16
36	Nitrogen and copper (â;) co-doped carbon dots as multi-functional fluorescent probes for Fe3+ ions and tetracycline. Microchemical Journal, 2022, 181, 107628.	2.3	16

#	Article	IF	Citations
37	N, P Co-Doped Carbon Dots as Multifunctional Fluorescence Nano-Sensor for Sensitive and Selective Detection of Cr(VI) and Ascorbic Acid. Journal of Analysis and Testing, 2022, 6, 335-345.	2.5	15
38	Facile preparation of chitosan coated silver nanoparticles embedded cotton fabric for point-of-use water disinfection. Materials Letters, 2020, 277, 128256.	1.3	14
39	Unsupported liquid-state platform for SERS-based determination of triazophos. Mikrochimica Acta, 2020, 187, 502.	2.5	14
40	Self-supporting liquid film as reproducible SERS platform for therapeutic drug monitoring of berberine hydrochloride in human urine. Microchemical Journal, 2021, 165, 106122.	2.3	14
41	Phenotyping Bacteria through a Black-Box Approach: Amplifying Surface-Enhanced Raman Spectroscopy Spectral Differences among Bacteria by Inputting Appropriate Environmental Stress. Analytical Chemistry, 2022, 94, 6791-6798.	3.2	14
42	Pumice-loaded rGO@MnO2 nanomesh photocatalyst with visible light response for rapid degradation of ciprofloxacin. Separation and Purification Technology, 2022, 297, 121502.	3.9	14
43	Graphene oxide/polydimethylsiloxane composite sponge for removing Pb(<scp>ii</scp>) from water. RSC Advances, 2020, 10, 22492-22499.	1.7	11
44	Evaluation of the intrinsic pH sensing performance of surface-enhanced Raman scattering pH probes. Microchemical Journal, 2020, 154, 104565.	2.3	10
45	Recent advances of environmental pollutants detection via paperâ€based sensing strategy. Luminescence, 2021, 36, 1818-1836.	1.5	10
46	Screening for malachite green contamination on live fish skin with chewing gum based viscoelastic SERS sensor. Journal of Food and Drug Analysis, 2020, 28, 231-238.	0.9	10
47	Fluorescence immunoassay rapid detection of 2019-nCoV antibody based on the fluorescence resonance energy transfer between graphene quantum dots and Ag@Au nanoparticle. Microchemical Journal, 2022, 173, 107046.	2.3	10
48	The design of aggregation-induced fluorescence sensor based on the cetyltrimethylammonium bromide-mediated nitrogen-doped carbon dots for selective detection of Hg2+. Dyes and Pigments, 2022, 199, 110084.	2.0	10
49	Free-Standing Membrane Liquid-State Platform for SERS-Based Determination of Norfloxacin in Environmental Samples. Journal of Analysis and Testing, 2021, 5, 217-224.	2.5	9
50	Determination and pharmacokinetics of ergometrine maleate in rabbit blood with on line microdialysis sampling and fluorescence detection. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 29-33.	1.4	8
51	A dual functional cotton swab sensor for rapid on-site naked-eye sensing of nitro explosives on surfaces. Microchemical Journal, 2020, 159, 105398.	2.3	8
52	Potential of removing Pb, Cd, and Cu from aqueous solutions using a novel modified ginkgo leaves biochar by simply one-step pyrolysis. Biomass Conversion and Biorefinery, $0, 1$.	2.9	8
53	Determination of organophosphate flame retardant tris(2â€chloroethyl)phosphine based on the luminol–H ₂ O ₂ chemiluminescence system. Luminescence, 2022, 37, 263-267.	1.5	8
54	Boosting bacteria differentiation efficiency with multidimensional surfaceâ€enhanced Raman scattering: the example of ⟨i⟩Bacillus cereus⟨/i⟩. Luminescence, 2022, 37, 1145-1151.	1.5	8

#	Article	IF	CITATIONS
55	Chemiluminescence based on UV-assisted persulfate activation for sensitive detection of triphenyl phosphate. Science of the Total Environment, 2022, 836, 155617.	3.9	8
56	Multidimensional Surface-Enhanced Raman Scattering (SERS) Strategy for Tea Differentiation. ACS Food Science & Technology, 2022, 2, 1096-1102.	1.3	7
57	Copper foam <i>in situ</i> loaded with precious metal nanoparticles as transmission SEIRAS substrate for rapid detection of dithiocarbamate pesticides. Analytical Methods, 2020, 12, 3600-3607.	1.3	6
58	Fluorescence analysis of cobalt(ii) in water with \hat{l}^2 -cyclodextrin modified Mn-doped ZnS quantum dots. Analytical Methods, 2019, 11, 3829-3836.	1.3	5
59	Ratiometric fluorescent probe for tetracycline detection based on waste printing paper. Luminescence, 2021, 36, 1553-1560.	1.5	5
60	Decision table in Rough Set as a new chemometric approach for synthesis optimization: Mn-doped ZnS quantum dots as the example. Chemometrics and Intelligent Laboratory Systems, 2018, 182, 124-130.	1.8	4
61	Molecularly imprinted polymers hydrogel for the rapid risk-category-specific screening of food using SPE followed by fluorescence spectrometric detection. Microchemical Journal, 2020, 159, 105408.	2.3	4
62	From children's toy to versatile sensor: One-step doping of Play-Doh with primary amino group for explosive detection both on surfaces and in solution. Analytica Chimica Acta, 2020, 1128, 193-202.	2.6	4
63	Observation and analysis of VOCs in nine prefecture-level cities of Sichuan Province, China. Environmental Monitoring and Assessment, 2020, 192, 511.	1.3	4
64	Highly selective and sensitive fluorescence determination of m-Phenylenediamine. Microchemical Journal, 2021, 167, 106283.	2.3	4
65	Quantitative detection of 6-thioguanine in body fluids based on a free-standing liquid membrane SERS substrate. Analytical and Bioanalytical Chemistry, 2022, 414, 1663-1670.	1.9	4
66	Assessing the effect of different pH maintenance situations on bacterial SERS spectra. Analytical and Bioanalytical Chemistry, 2022, 414, 4977-4985.	1.9	4
67	Silver nanoparticles on copper foam as substrate for full range mid-infrared surface enhanced infrared absorption spectroscopy in transmission configuration. Microchemical Journal, 2019, 151, 104252.	2.3	3
68	Determination of ergometrine maleate by fluorescence detection. Luminescence, 2005, 20, 124-128.	1.5	2
69	Study on the Treatment of Formaldehyde Wastewater by Addition Reaction. , 2010, , .		2
70	Multi-wavelength UV imaging detection system applied for varying environmental conditions: Detection of SO2 as an example. Microchemical Journal, 2020, 153, 104395.	2.3	2
71	Rapid degradation of tetracycline in aqueous solution by Fe/Cu catalysis enhanced by H ₂ O ₂ activation. Environmental Technology (United Kingdom), 2022, 43, 3719-3727.	1.2	2
72	Halogen ions modified Ag NPs for ultrasensitive SERS detection of Polycyclic aromatic hydrocarbons. Luminescence, 0, , .	1.5	2

ZHENG-JUN GONG

#	Article	IF	CITATIONS
73	The Study of Copper (II) Removal from Aqueous Solutions by Adsorption Using Corn Stalk Material. Advanced Materials Research, 2012, 610-613, 1950-1953.	0.3	1
74	Flow Injection Spectrophotometric Determination Iron(II) and Iron(III) in Environmental Samples. , 2009, , .		0
75	Notice of Retraction: Adsorption-desorption behavior of copper in Sichuan mine soils. , 2010, , .		O
76	Adsorption of Nickel in Water by Brown Algae: Laminaria Japonica and Undaria Pinnatifida. , 2010, , .		0
77	Determination of Lead in Lipstick by Microwave Digestion and FAAS. , 2010, , .		0
78	Notice of Retraction: Adsorption of Cr(IV) from aqueous solution using peanut shell. , 2010, , .		0
79	Notice of Retraction: Study on adsorption of chromium(VI) in wastewater by high efficient na-bentonite. , 2010, , .		O
80	Adsorption of Copper in Aqueous Solution by Modified Peanut Shell. Advanced Materials Research, 2012, 610-613, 1837-1840.	0.3	0
81	The Research on Preparation of Modified Bentonite and Adsorption of Crystal Violet in Dyeing Wastewater. Advanced Materials Research, 0, 610-613, 1731-1734.	0.3	0