Young Ho Rhee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3398438/publications.pdf

Version: 2024-02-01

69 papers 1,791 citations

304743

22

h-index

302126 39 g-index

82 all docs 82 docs citations

82 times ranked 1456 citing authors

#	Article	IF	CITATIONS
1	Sequential Metal Catalysis towards 7â€Oxostaurosporine and Its Nonâ€Natural Septanose Analogue. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
2	Pd-Catalyzed Umpolung Chemistry of Glycal Acetates and Their [2,3]-Dehydrosugar Isomers. Organic Letters, 2022, 24, 570-574.	4.6	1
3	A Convergent Synthesis of the Tetrasaccharide Fragment of the Purported Structure of Durantanin I. Bulletin of the Korean Chemical Society, 2021, 42, 679-682.	1.9	9
4	Catalytic Asymmetric Synthesis of Hexahydro-furofuran-3-ol and Its Pyran Derivatives. Organic Letters, 2021, 23, 3584-3587.	4.6	3
5	Convergent Synthesis of Tetrasaccharide Fragment of Cervimycin K. Organic Letters, 2021, 23, 4468-4472.	4.6	4
6	Synthetic Study toward Saccharomicin Based upon Asymmetric Metal Catalysis. Organic Letters, 2021, 23, 5969-5972.	4.6	6
7	Palladiumâ€Catalyzed Asymmetric Decarboxylative Addition of βâ€Keto Acids to Heteroatomâ€Substituted Allenes. Angewandte Chemie, 2021, 133, 22340-22345.	2.0	6
8	Frontispiz: Palladiumâ \in Catalyzed Asymmetric Decarboxylative Addition of \hat{l}^2 â \in Keto Acids to Heteroatomâ \in Substituted Allenes. Angewandte Chemie, 2021, 133, .	2.0	0
9	Palladiumâ€Catalyzed Asymmetric Decarboxylative Addition of βâ€Keto Acids to Heteroatomâ€Substituted Allenes. Angewandte Chemie - International Edition, 2021, 60, 22166-22171.	13.8	15
10	Frontispiece: Palladiumâ€Catalyzed Asymmetric Decarboxylative Addition of βâ€Keto Acids to Heteroatomâ€Substituted Allenes. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
11	Generation of N–H Imines from α-Azidocarboxylic Acids through Ru-Catalyzed Decarboxylation. Journal of Organic Chemistry, 2021, 86, 17409-17417.	3.2	1
12	Flexible Total Synthesis of 11â€Deoxylandomycins and Their Nonâ€Natural Analogues by Way of Asymmetric Metal Catalysis. Angewandte Chemie - International Edition, 2020, 59, 2349-2353.	13.8	25
13	Flexible Total Synthesis of 11â€Deoxylandomycins and Their Nonâ€Natural Analogues by Way of Asymmetric Metal Catalysis. Angewandte Chemie, 2020, 132, 2369-2373.	2.0	6
14	Concurrent Formation of N–H Imines and Carbonyl Compounds by Ruthenium-Catalyzed C–C Bond Cleavage of β-Hydroxy Azides. Organic Letters, 2020, 22, 4608-4613.	4.6	7
15	Ruthenium-Catalyzed Regioselective Olefin Migration of Dihydropyran Acetals: A <i>De Novo</i> Strategy toward β-2,6-Dideoxypyranoglycosides. Organic Letters, 2020, 22, 2178-2181.	4.6	8
16	Rücktitelbild: Flexible Total Synthesis of 11â€Deoxylandomycins and Their Nonâ€Natural Analogues by Way of Asymmetric Metal Catalysis (Angew. Chem. 6/2020). Angewandte Chemie, 2020, 132, 2544-2544.	2.0	0
17	Synthesis of Deoxyaminosugar Cyclohexyl- <scp>l</scp> -callipeltose and Its Diastereomer Using Pd-Catalyzed Asymmetric Hydroalkoxylation. Journal of Organic Chemistry, 2019, 84, 9353-9357.	3.2	5
18	A Convergent Synthetic Strategy towards Oligosaccharides containing 2,3,6â€√rideoxypyranoglycosides. Angewandte Chemie, 2019, 131, 638-641.	2.0	6

#	Article	IF	CITATIONS
19	A Convergent Synthetic Strategy towards Oligosaccharides containing 2,3,6â€Trideoxypyranoglycosides. Angewandte Chemie - International Edition, 2019, 58, 628-631.	13.8	22
20	Palladium-Catalyzed Asymmetric Nitrogen-Selective Addition Reaction of Indoles to Alkoxyallenes. Organic Letters, 2018, 20, 1248-1251.	4.6	36
21	Ru-Catalyzed Chemoselective Olefin Migration Reaction of Cyclic Allylic Acetals to Enol Acetals. Organic Letters, 2018, 20, 979-982.	4.6	10
22	Short Enantioselective Total Syntheses of Cheloviolenes A and B and Dendrillolide C via Convergent Fragment Coupling Using a Tertiary Carbon Radical. Journal of Organic Chemistry, 2018, 83, 6958-6976.	3.2	44
23	Zincâ€Mediated <i>syn</i> â€Selective Crotylation of Nâ€Unsubstituted Imines. Asian Journal of Organic Chemistry, 2017, 6, 441-444.	2.7	5
24	Redox reaction between benzyl azides and aryl azides: concerted synthesis of aryl nitriles and anilines. Organic and Biomolecular Chemistry, 2017, 15, 1636-1641.	2.8	14
25	Chemoselective, Isomerizationâ€Free Synthesis of <i>N</i> â€Acylketimines from N–H Imines. Advanced Synthesis and Catalysis, 2017, 359, 1503-1507.	4.3	9
26	Versatile Construction of 6-Substituted <i>cis</i> -2,8-Dioxabicyclo[3.3.0]octan-3-ones: Short Enantioselective Total Syntheses of Cheloviolenes A and B and Dendrillolide C. Journal of the American Chemical Society, 2017, 139, 7192-7195.	13.7	53
27	Flexible Tetrahydropyran Synthesis from Homopropargylic Alcohols Using Sequential Pd–Au Catalysis. Organic Letters, 2017, 19, 242-245.	4.6	20
28	Ruthenium Bisammine Complex and Its Reaction with Aryl Azides. Organometallics, 2017, 36, 3471-3476.	2.3	16
29	Pd-Catalyzed Regioselective Asymmetric Addition Reaction of Unprotected Pyrimidines to Alkoxyallene. Organic Letters, 2017, 19, 4684-4687.	4.6	29
30	Catalytic transformation of esters of 1,2-azido alcohols into \hat{l}_{\pm} -amido ketones. Chemical Communications, 2016, 52, 6549-6552.	4.1	20
31	De Novo Synthesis of Furanose Sugars: Catalytic Asymmetric Synthesis of Apiose and Apioseâ€Containing Oligosaccharides. Angewandte Chemie, 2016, 128, 9885-9889.	2.0	11
32	De Novo Synthesis of Furanose Sugars: Catalytic Asymmetric Synthesis of Apiose and Apioseâ€Containing Oligosaccharides. Angewandte Chemie - International Edition, 2016, 55, 9733-9737.	13.8	35
33	Synthesis of 1H-azadienes and application to one-pot organic transformations. RSC Advances, 2016, 6, 661-668.	3 . 6	7
34	Synthesis of Enamides by Rutheniumâ€Catalyzed Reaction of Alkyl Azides with Acid Anhydrides in Ionic Liquid. ChemCatChem, 2015, 7, 4030-4034.	3.7	19
35	Fast and Complete Transimination of NH Imines into <i>O</i> â€Alkyl Oximes. Asian Journal of Organic Chemistry, 2015, 4, 316-319.	2.7	8
36	A Stereoselective Access to Cyclic <i>cis</i> â€1,2â€Amino Alcohols from <i>trans</i> â€1,2â€Azido Alcohol Precursors. Advanced Synthesis and Catalysis, 2015, 357, 1398-1404.	4.3	7

#	Article	IF	Citations
37	A concise synthetic method towards (â^')-swainsonine and its 8-epimer by using palladium-catalyzed asymmetric hydroamination of alkoxyallene as the key strategy. Tetrahedron, 2015, 71, 5939-5945.	1.9	10
38	Unique Divergent Reactivity of Boc-Protected Homopropargylic Alkoxyalkylamines in the Gold(I)-Catalyzed Domino Catalytic Reactions: Application to the Formal Synthesis of (\hat{a} e")-Pseudodistomin B. Synthesis, 2014, 46, 2155-2160.	2.3	6
39	Synthesis of Piperidones from Benzyl Azides and Acetone. Bulletin of the Korean Chemical Society, 2014, 35, 3433-3436.	1.9	7
40	Novel Catalyst System for Hydrostannation of Alkynes. Chemistry - A European Journal, 2014, 20, 1267-1271.	3.3	15
41	Synthesis of the Tricyclic Core in Stemonamine Alkaloids via One-Pot Gold(I)-Catalyzed Cyclization and Schmidt Rearrangement: Formal Synthesis of ($\hat{A}\pm$)-Stemonamine. Journal of Organic Chemistry, 2014, 79, 11119-11124.	3.2	20
42	Stereoselective Synthesis of Highly Substituted αâ€Silylamines from Silylmethyl Azides under Ru Catalysis. European Journal of Organic Chemistry, 2014, 2014, 7577-7581.	2.4	7
43	A Ru-catalyzed one-pot synthesis of homopropargylic amines from alkyl azides under photolytic conditions. RSC Advances, 2014, 4, 20632-20635.	3.6	17
44	Exploiting the Nucleophilicity of NH Imines: Synthesis of Enamides from Alkyl Azides and Acid Anhydrides. Advanced Synthesis and Catalysis, 2014, 356, 2769-2774.	4.3	22
45	Access to <i>trans</i> â€3,4â€Dihydroxyâ€2â€alkylpyrrolidines and Piperidines by Use of Stereodefined Cyclic <i>N</i> , <i>O</i> å€Acetals as a Diversityâ€Generating Element. Chemistry - A European Journal, 2014, 20, 16391-16396.	3.3	10
46	C–H Activation Guided by Aromatic N–H Ketimines: Synthesis of Functionalized Isoquinolines Using Benzyl Azides and Alkynes. Journal of Organic Chemistry, 2014, 79, 9094-9103.	3.2	65
47	Pd-Catalyzed Asymmetric Intermolecular Hydroalkoxylation of Allene: An Entry to Cyclic Acetals with Activating Group-Free and Flexible Anomeric Control. Journal of the American Chemical Society, 2014, 136, 13618-13621.	13.7	86
48	A Flexible Metalâ€Catalyzed Synthesis of Highly Substituted Aryl Phenanthrenyl Selenides. European Journal of Organic Chemistry, 2013, 2013, 460-464.	2.4	31
49	Entry to \hat{I}^2 -Alkoxyacrylates via Gold-Catalyzed Intermolecular Coupling of Alkynoates and Allylic Ethers. Organic Letters, 2013, 15, 1166-1169.	4.6	26
50	Formal Synthesis of Racemic Herbertene, \hat{l}_{\pm} -Herbertenol, \hat{l}_{\pm} -Herbertenol and Herbertenone via Gold(I)-Catalyzed Cyclization of 5-Phenyl-5-siloxy-3-en-1-ynes. Bulletin of the Korean Chemical Society, 2013, 34, 303-305.	1.9	2
51	A Perspective on the Stereodefined N,O-Acetals: Synthesis and Potential Applications. Synlett, 2012, 23, 2875-2879.	1.8	23
52	Characterization and Utility of Nâ€Unsubstituted Imines Synthesized from Alkyl Azides by Ruthenium Catalysis. Angewandte Chemie - International Edition, 2012, 51, 10851-10855.	13.8	68
53	Synthetic Strategy for Cyclic Amines: A Stereodefined Cyclic N,Oâ€Acetal as a Stereocontrol and Diversityâ€Generating Element. Angewandte Chemie - International Edition, 2012, 51, 12055-12058.	13.8	60
54	Stereodefined <i>N,O</i> -Acetals: Pd-Catalyzed Synthesis from Homopropargylic Amines and Utility in the Flexible Synthesis of 2,6-Substituted Piperidines. Journal of the American Chemical Society, 2012, 134, 4011-4014.	13.7	110

#	Article	IF	CITATIONS
55	Aliphatic dipeptide tags for multi-2-plex protein quantification. Analyst, The, 2011, 136, 1614.	3.5	5
56	Gold(I)-Catalyzed Synthesis of \hat{I}^3 -Hydroxyketones from 5-Allyloxy-1-ynes. Journal of Organic Chemistry, 2011, 76, 324-327.	3.2	21
57	A racemic formal total synthesis of clavukerin A using gold(I)-catalyzed cycloisomerization of 3-methoxy-1,6-enynes as the key strategy. Beilstein Journal of Organic Chemistry, 2011, 7, 740-743.	2.2	10
58	Highly Efficient and Chemoselective Rutheniumâ€Catalyzed Hydrosilylation of Aldehydes. Advanced Synthesis and Catalysis, 2011, 353, 3363-3366.	4.3	21
59	Gold(I)â€Catalyzed Access to Tetrahydropyranâ€4â€ones from 4â€(Alkoxyalkyl)oxyâ€1â€butynes: Formal Catalyt Petasis–Ferrier Rearrangement. Chemistry - A European Journal, 2011, 17, 1433-1436.	ic 3.3	34
60	Gold(I)â€Catalyzed Synthesis of Highly Substituted 2â€Cyclopentenones from 5â€Siloxypentâ€3â€enâ€1â€ynes. Chemistry - A European Journal, 2009, 15, 11837-11841.	3.3	30
61	Synthesis of UV active 2-methylisoborneol for water pollutant detection. Toxicology and Environmental Health Sciences, 2009, 1, 163-168.	2.1	0
62	Formal Alkyne Aza-Prins Cyclization: Gold(I)-Catalyzed Cycloisomerization of Mixed N,O-Acetals Generated from Homopropargylic Amines to Highly Substituted Piperidines. Journal of the American Chemical Society, 2009, 131, 14660-14661.	13.7	85
63	Gold(I)â€Catalyzed Cycloisomerization of 3â€Methoxyâ€1,6â€enynes Featuring Tandem Cyclization and [3,3]â€6igmatropic Rearrangement. Angewandte Chemie - International Edition, 2008, 47, 2263-2266.	13.8	97
64	Mass-Balanced ¹ H/ ² H Isotope Dipeptide Tag for Simultaneous Protein Quantitation and Identification. Analytical Chemistry, 2008, 80, 6145-6153.	6.5	13
65	Total Synthesis of (â^`)-Crambidine and Definition of the Relative Configuration of Its Unique Tetracyclic Guanidinium Core. Journal of the American Chemical Society, 2005, 127, 15652-15658.	13.7	24
66	A Flexible Approach towardtrans-Fused Polycyclic Tetrahydropyrans. A Synthesis of Prymnesin and Yessotoxin Units. Organic Letters, 2004, 6, 4311-4313.	4.6	43
67	A Rh(I)-Catalyzed Cycloisomerization of Homo- and Bis-homopropargylic Alcohols. Journal of the American Chemical Society, 2003, 125, 7482-7483.	13.7	133
68	A Ru Catalyzed Divergence:Â Oxidative Cyclization vs Cycloisomerization of Bis-homopropargylic Alcohols. Journal of the American Chemical Society, 2002, 124, 2528-2533.	13.7	182
69	Sequential Metal Catalysis towards 7â€Oxostaurosporine and Its Nonâ€Natural Septanose Analogue. Angewandte Chemie, 0, , .	2.0	0