
Yasuhide Furuta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3398413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tracing the origin of hair follicle stem cells. Nature, 2021, 594, 547-552.	13.7	62
2	Targeted gene disruption in a marsupial, Monodelphis domestica, by CRISPR/Cas9 genome editing. Current Biology, 2021, 31, 3956-3963.e4.	1.8	14
3	Pronuclear Microinjection during S-Phase Increases the Efficiency of CRISPR-Cas9-Assisted Knockin of Large DNA Donors in Mouse Zygotes. Cell Reports, 2020, 31, 107653.	2.9	53
4	Animal transgenesis now and beyond in the era of genome editing: Snapshots from the 15th Transgenic Technology Meeting (TT2019) in Kobe, Japan. Genes To Cells, 2019, 24, 762-767.	0.5	0
5	Ribosome Incorporation into Somatic Cells Promotes Lineage Transdifferentiation towards Multipotency. Scientific Reports, 2018, 8, 1634.	1.6	17
6	Regulation of continuous but complex expression pattern of <i>Six1</i> during early sensory development. Developmental Dynamics, 2018, 247, 250-261.	0.8	4
7	Persistent fibroblast growth factor 23 signalling in the parathyroid glands for secondary hyperparathyroidism in mice with chronic kidney disease. Scientific Reports, 2017, 7, 40534.	1.6	42
8	Apical constriction in distal visceral endoderm cells initiates global, collective cell rearrangement in embryonic visceral endoderm to form anterior visceral endoderm. Developmental Biology, 2017, 429, 20-30.	0.9	14
9	Smad4 is essential for directional progression from committed neural progenitor cells through neuronal differentiation in the postnatal mouse brain. Molecular and Cellular Neurosciences, 2017, 83, 55-64.	1.0	7
10	R26â€WntVis reporter mice showing graded response to Wnt signal levels. Genes To Cells, 2016, 21, 661-669.	0.5	14
11	Intra-spindle Microtubule Assembly Regulates Clustering of Microtubule-Organizing Centers during Early Mouse Development. Cell Reports, 2016, 15, 54-60.	2.9	25
12	A possible aid in targeted insertion of large DNA elements by CRISPR/Cas in mouse zygotes. Genesis, 2016, 54, 65-77.	0.8	29
13	Lats1 suppresses centrosome overduplication by modulating the stability of Cdc25B. Scientific Reports, 2015, 5, 16173.	1.6	19
14	Activation of Six1 Expression in Vertebrate Sensory Neurons. PLoS ONE, 2015, 10, e0136666.	1.1	8
15	Upâ€regulation of <scp>HP</scp> 1γ expression during neuronal maturation promotes axonal and dendritic development in mouse embryonic neocortex. Genes To Cells, 2015, 20, 108-120.	0.5	13
16	Translocase of inner mitochondrial membrane 44 alters the mitochondrial fusion and fission dynamics and protects from type 2 diabetes. Metabolism: Clinical and Experimental, 2015, 64, 677-688.	1.5	20
17	Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration. PLoS ONE, 2015, 10, e0130436.	1.1	31
18	P120-catenin regulates REST/CoREST, and modulates mouse embryonic stem cell differentiation. Journal of Cell Science, 2014, 127, 4037-51.	1.2	31

YASUHIDE FURUTA

#	Article	IF	CITATIONS
19	Defective FGF signaling causes coloboma formation and disrupts retinal neurogenesis. Cell Research, 2013, 23, 254-273.	5.7	36
20	Smad4 Is Required Predominantly in the Developmental Processes Dependent on the BMP Branch of the TGF-β Signaling System in the Embryonic Mouse Retina. , 2011, 52, 2930.		10
21	Cv2, functioning as a pro-BMP factor via twisted gastrulation, is required for early development of nephron precursors. Developmental Biology, 2010, 337, 405-414.	0.9	41
22	The Spatial Patterning of Mouse Cone Opsin Expression Is Regulated by Bone Morphogenetic Protein Signaling through Downstream Effector COUP-TF Nuclear Receptors. Journal of Neuroscience, 2009, 29, 12401-12411.	1.7	64
23	Generation and Characterization of Conditional Heparin-Binding EGF-Like Growth Factor Knockout Mice. PLoS ONE, 2009, 4, e7461.	1.1	31
24	Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller Glial cell development. Journal of Comparative Neurology, 2008, 510, 237-250.	0.9	145
25	Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller Glial cell development. Journal of Comparative Neurology, 2008, 510, spc1-spc1.	0.9	Ο
26	Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller glial cell development. Journal of Comparative Neurology, 2008, 510, spc1-spc1.	0.9	0
27	Somal positioning and dendritic growth of horizontal cells are regulated by interactions with homotypic neighbors. European Journal of Neuroscience, 2008, 27, 1607-1614.	1.2	35
28	Twisted gastrulation mutation suppresses skeletal defect phenotypes in Crossveinless 2 mutant mice. Mechanisms of Development, 2008, 125, 832-842.	1.7	14
29	Bone Morphogenetic Proteins, Eye Patterning, and Retinocollicular Map Formation in the Mouse. Journal of Neuroscience, 2008, 28, 7057-7067.	1.7	29
30	Eomesodermin, a target gene of Pou4f2, is required for retinal ganglion cell and optic nerve development in the mouse. Development (Cambridge), 2008, 135, 271-280.	1.2	71
31	Lim1 Is Essential for the Correct Laminar Positioning of Retinal Horizontal Cells. Journal of Neuroscience, 2007, 27, 14099-14107.	1.7	94
32	Novel lethal mouse mutants produced in balancer chromosome screens. Gene Expression Patterns, 2006, 6, 653-665.	0.3	26
33	Tissue-specific RNAi reveals that WT1 expression in nurse cells controls germ cell survival and spermatogenesis. Genes and Development, 2006, 20, 147-152.	2.7	103
34	Essential pro-Bmp roles of crossveinless 2 in mouse organogenesis. Development (Cambridge), 2006, 133, 4463-4473.	1.2	107
35	Fgf15 is required for proper morphogenesis of the mouse cardiac outflow tract. Genesis, 2005, 41, 192-201.	0.8	59
36	Recent innovations in tissue-specific gene modifications in the mouse. Birth Defects Research Part C: Embryo Today Reviews, 2005, 75, 43-57.	3.6	21

Yasuhide Furuta

#	Article	IF	CITATIONS
37	Distinct developmental programs require different levels of Bmp signaling during mouse retinal development. Development (Cambridge), 2005, 132, 913-923.	1.2	104
38	Tbx1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development (Cambridge), 2005, 132, 5307-5315.	1.2	116
39	AP-2α selectively regulates fragile X mental retardation-1 gene transcription during embryonic development. Human Molecular Genetics, 2005, 14, 2027-2034.	1.4	15
40	Threshold-specific requirements for Bmp4 in mandibular development. Developmental Biology, 2005, 283, 282-293.	0.9	128
41	BMP signaling through ACVRI is required for left–right patterning in the early mouse embryo. Developmental Biology, 2004, 276, 185-193.	0.9	50
42	DEVELOPMENTAL EXPRESSION OF TWO CXC CHEMOKINES, MIP-2 AND KC, AND THEIR RECEPTORS. Cytokine, 2001, 14, 253-263.	1.4	42
43	Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Developmental Dynamics, 2001, 221, 342-349.	0.8	89
44	Retina- and ventral forebrain-specific Cre recombinase activity in transgenic mice. Genesis, 2000, 26, 130-132.	0.8	181
45	Comparison of the expression of three highly related genes, Fgf8, Fgf17 and Fgf18, in the mouse embryo. Mechanisms of Development, 1998, 74, 175-177.	1.7	178
46	Impairment of Mobility in Endodermal Cells by FAK Deficiency. Experimental Cell Research, 1996, 222, 298-303.	1.2	73
47	A new strategy of gene trapping in ES cells using 3'RACE. Transgenic Research, 1995, 4, 277-287.	1.3	44
48	Ovarian Teratomas in Mice Lacking the Protooncogenec-mos. Japanese Journal of Cancer Research, 1995, 86, 540-545.	1.7	16
49	Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 1995, 377, 539-544.	13.7	1,698
50	Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature, 1994, 370, 68-71.	13.7	434
51	Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature, 1994, 372, 182-186.	13.7	988
52	Degeneration of skeletal and cardiac muscles in c-myb transgenic mice. Transgenic Research, 1993, 2, 199-207.	1.3	19
53	Hepatocarcinogenesis in Transgenic Mice Carrying Albumin-promoted SV40 T Antigen Gene. Japanese Journal of Cancer Research, 1991, 82, 1226-1233.	1.7	31
54	Detection of activated c-H-ras oncogene in hepatocellular carcinomas developing in transgenic mice harboring albumin promoter-regulated simian virus 40 gene. Carcinogenesis, 1990, 11, 1145-1148.	1.3	26