
Hamid Ashrafi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3398345/publications.pdf Version: 2024-02-01

ΗΛΜΙΟ ΔΩΗΡΛΕΙ

#	Article	IF	CITATIONS
1	Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492, 423-427.	13.7	1,204
2	Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics, 2014, 46, 270-278.	9.4	867
3	A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genetics, 2016, 48, 657-666.	9.4	432
4	<i>Uniform ripening</i> Encodes a <i>Golden 2-like</i> Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science, 2012, 336, 1711-1715.	6.0	384
5	Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of <i>Gossypium</i> spp G3: Genes, Genomes, Genetics, 2015, 5, 1187-1209.	0.8	226
6	De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics, 2011, 12, 389.	1.2	178
7	Genetics, Genomics and Breeding of Late Blight and Early Blight Resistance in Tomato. Critical Reviews in Plant Sciences, 2008, 27, 75-107.	2.7	141
8	De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics, 2012, 13, 571.	1.2	109
9	Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip. PLoS ONE, 2013, 8, e56200.	1.1	99
10	An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce. G3: Genes, Genomes, Genetics, 2013, 3, 617-631.	0.8	91
11	Insights into the Evolution of Cotton Diploids and Polyploids from Whole-Genome Re-sequencing. G3: Genes, Genomes, Genetics, 2013, 3, 1809-1818.	0.8	73
12	Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific <i>Capsicum</i> RIL population. Genome, 2013, 56, 61-74.	0.9	69
13	Sequencingâ€Based Bin Map Construction of a Tomato Mapping Population, Facilitating Highâ€Resolution Quantitative Trait Loci Detection. Plant Genome, 2019, 12, 180010.	1.6	65
14	Breeding Trait Priorities of the Blueberry Industry in the United States and Canada. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1021-1028.	0.5	56
15	Selective genotyping to identify late blight resistance genes in an accession of the tomato wild species Solanum pimpinellifolium. Euphytica, 2012, 187, 63-75.	0.6	49
16	A new genetic linkage map of tomato based on a <i>Solanum lycopersicum</i> Â× <i>S. pimpinellifolium</i> RIL population displaying locations of candidate pathogen response genes. Genome, 2009, 52, 935-956.	0.9	48
17	A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding. Horticulture Research, 2016, 3, 16036.	2.9	47
18	<i>CaDMR1</i> Cosegregates with QTL <i>Pc5.1</i> for Resistance to <i>Phytophthora capsici</i> in Pepper (<i>Capsicum annuum</i>). Plant Genome, 2014, 7, plantgenome2014.03.0011.	1.6	46

HAMID ASHRAFI

#	Article	IF	CITATIONS
19	Regions Underlying Population Structure and the Genomics of Organ Size Determination in <i>Capsicum annuum</i> . Plant Genome, 2017, 10, plantgenome2017.03.0026.	1.6	41
20	An optimized protocol for stepwise optimization of real-time RT-PCR analysis. Horticulture Research, 2021, 8, 179.	2.9	38
21	Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.). BMC Genomics, 2012, 13, 185.	1.2	36
22	Identification of novel quantitative trait loci for increased lycopene content and other fruit quality traits in a tomato recombinant inbred line population. Molecular Breeding, 2012, 30, 549-567.	1.0	35
23	QTL Mapping of Fruit Rot Resistance to the Plant Pathogen Phytophthora capsici in a Recombinant Inbred Line Capsicum annuum Population. Phytopathology, 2014, 104, 479-483.	1.1	35
24	3D point cloud data to quantitatively characterize size and shape of shrub crops. Horticulture Research, 2019, 6, 43.	2.9	29
25	Detached-Leaflet Evaluation of Tomato Germplasm for Late Blight Resistance and Its Correspondence to Field and Greenhouse Screenings. Plant Disease, 2015, 99, 718-722.	0.7	28
26	New Insights on Eggplant/Tomato/Pepper Synteny and Identification of Eggplant and Pepper Orthologous QTL. Frontiers in Plant Science, 2016, 7, 1031.	1.7	28
27	DNA Sequence Evolution and Rare Homoeologous Conversion in Tetraploid Cotton. PLoS Genetics, 2016, 12, e1006012.	1.5	27
28	Development and bin mapping of gene-associated interspecific SNPs for cotton (Gossypium hirsutum L.) introgression breeding efforts. BMC Genomics, 2014, 15, 945.	1.2	25
29	A Solanum lycopersicum × Solanum pimpinellifolium Linkage Map of Tomato Displaying Genomic Locations of R-Genes, RGAs, and Candidate Resistance/Defense-Response ESTs. International Journal of Plant Genomics, 2008, 2008, 1-18.	2.2	24
30	Ultra-High Density, Transcript-Based Genetic Maps of Pepper Define Recombination in the Genome and Synteny Among Related Species. G3: Genes, Genomes, Genetics, 2015, 5, 2341-2355.	0.8	23
31	BAC-End Sequence-Based SNP Mining in Allotetraploid Cotton (<i>Gossypium</i>) Utilizing Resequencing Data, Phylogenetic Inferences, and Perspectives for Genetic Mapping. G3: Genes, Genomes, Genetics, 2015, 5, 1095-1105.	0.8	20
32	Characterization of early blight resistance in a recombinant inbred line population of tomato: II. Identification of QTLs and their co-localization with candidate resistance genes. Advanced Studies in Biology, 0, 7, 149-168.	0.2	16
33	An anchored chromosomeâ€scale genome assembly of spinach improves annotation and reveals extensive gene rearrangements in euasterids. Plant Genome, 2021, 14, e20101.	1.6	13
34	A Longâ€Read Transcriptome Assembly of Cotton (Gossypium hirsutum L.) and Intraspecific Single Nucleotide Polymorphism Discovery. Plant Genome, 2015, 8, eplantgenome2014.10.0068.	1.6	12
35	Identification and Mapping of Late Blight Resistance Quantitative Trait Loci in Tomato Accession Pl 163245. Plant Genome, 2018, 11, 180007.	1.6	11
36	High-density linkage map construction and identification of loci regulating fruit quality traits in blueberry. Horticulture Research, 2021, 8, 169.	2.9	10

Hamid Ashrafi

#	Article	IF	CITATIONS
37	Nuclear DNA contents and ploidy levels of North American Vaccinium species and interspecific hybrids. Scientia Horticulturae, 2022, 297, 110955.	1.7	8
38	A Rosaceae Family-Level Approach To Identify Loci Influencing Soluble Solids Content in Blackberry for DNA-Informed Breeding. G3: Genes, Genomes, Genetics, 2020, 10, 3729-3740.	0.8	6
39	Genotype, Environment, Year, and Harvest Effects on Fruit Quality Traits of Five Blueberry (Vaccinium) Tj ETQq1	0.784314 1.3	4 rgBT /Over
40	Disease Resistance to Multiple Fungal and Oomycete Pathogens Evaluated Using a Recombinant Inbred Line Population in Pepper. Phytopathology, 2017, 107, 1522-1531.	1.1	5
41	Characterization of early blight resistance in a recombinant inbred line population of tomato: I. Heritability and trait correlations. Advanced Studies in Biology, 0, 7, 131-148.	0.2	5
42	Genome sequence of <i>Monilinia vaccinii-corymbosi</i> sheds light on mummy berry disease infection of blueberry and mating type. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	4
43	Biomass yields, cytogenetics, fertility, and compositional analyses of novel bioenergy grass hybrids () Tj ETQq1 1 ().784314 2.5	rgBT /Overlo
44	Reproductive developmental transcriptome analysis of Tripidium ravennae (Poaceae). BMC Genomics, 2021, 22, 483.	1.2	1
45	Simulated storage causes carbohydrate loss and rooting differences in two poinsettia cultivars. Canadian Journal of Plant Science, 2020, 100, 459-462.	0.3	0
46	Detection of Fruit Meals Within Laboratory-Raised and Field-Trapped Adult Drosophila suzukii (Diptera: Drosophilidae) Guts. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	0