Young-Woong Suh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3398271/publications.pdf

Version: 2024-02-01

430874 434195 1,167 60 18 31 citations h-index g-index papers 61 61 61 1232 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MnCo ₂ O ₄ spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chemistry, 2017, 19, 1619-1623.	9.0	158
2	Catalytic Vapor Cracking for Improvement of Bio-Oil Quality. Catalysis Surveys From Asia, 2011, 15, 161-180.	2.6	66
3	Direct conversion of cellulose to high-yield methyl lactate over Ga-doped Zn/H-nanozeolite Y catalysts in supercritical methanol. Green Chemistry, 2017, 19, 1969-1982.	9.0	62
4	2â€(<i>N</i> à€Methylbenzyl)pyridine: A Potential Liquid Organic Hydrogen Carrier with Fast H ₂ Release and Stable Activity in Consecutive Cycles. ChemSusChem, 2018, 11, 661-665.	6.8	60
5	A sustainable mesoporous palladium-alumina catalyst for efficient hydrogen release from N-heterocyclic liquid organic hydrogen carriers. Communications Chemistry, 2019, 2, .	4.5	45
6	Remarkably fast low-temperature hydrogen storage into aromatic benzyltoluenes over MgO-supported Ru nanoparticles with homolytic and heterolytic H2 adsorption. Applied Catalysis B: Environmental, 2021, 286, 119889.	20.2	40
7	Different catalytic behaviors of Pd and Pt metals in decalin dehydrogenation to naphthalene. Catalysis Science and Technology, 2017, 7, 3728-3735.	4.1	38
8	Ru/MnCo2O4 as a catalyst for tunable synthesis of 2,5-bis(hydroxymethyl)furan or 2,5-bis(hydroxymethyl)tetrahydrofuran from hydrogenation of 5-hydroxymethylfurfural. Molecular Catalysis, 2020, 484, 110722.	2.0	33
9	Density functional theory study on the dehydrogenation of 1,2-dimethyl cyclohexane and 2-methyl piperidine on Pd and Pt catalysts. Catalysis Today, 2020, 352, 345-353.	4.4	30
10	Higher Brønsted acidity of WO /ZrO2 catalysts prepared using a high-surface-area zirconium oxyhydroxide. Molecular Catalysis, 2017, 438, 272-279.	2.0	28
11	Role of ZrO2 in Cu/ZnO/ZrO2 catalysts prepared from the precipitated Cu/Zn/Zr precursors. Catalysis Today, 2016, 265, 254-263.	4.4	27
12	State-of-the-art Catalysts for Hydrogen Storage in Liquid Organic Hydrogen Carriers. Chemistry Letters, 2022, 51, 239-255.	1.3	27
13	Comparison of activity and stability of supported Ni2P and Pt catalysts in the hydroprocessing of palm oil into normal paraffins. Journal of Industrial and Engineering Chemistry, 2020, 83, 189-199.	5.8	26
14	Enhanced Activity and Stability of a Carbonâ€Coated Aluminaâ€Supported Pd Catalyst in the Dehydrogenation of a Liquid Organic Hydrogen Carrier, Perhydro 2â€(<i>n</i> ê€methylbenzyl)Pyridine. ChemCatChem, 2018, 10, 3892-3900.	3.7	25
15	Superior Long-Term Stability of a Mesoporous Alumina-Supported Pt Catalyst in the Hydrodeoxygenation of Palm Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 1193-1202.	6.7	23
16	Highly Active Mesoporous Cuâ^'Al ₂ O ₃ Catalyst for the Hydrodeoxygenation of Furfural to 2â€methylfuran. ChemCatChem, 2020, 12, 105-111.	3.7	22
17	Hydrogenation of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over mesoporous Cu–Al2O3 catalyst: From batch to continuous processing. Journal of Industrial and Engineering Chemistry, 2021, 102, 186-194.	5.8	22
18	Recent progress in dehydrogenation catalysts for heterocyclic and homocyclic liquid organic hydrogen carriers. Korean Journal of Chemical Engineering, 2022, 39, 20-37.	2.7	21

#	Article	IF	CITATIONS
19	Mesoporous sulfur-decorated Pt–Al2O3 for dehydrogenation of perhydro benzyltoluenes: Activity-favorable adsorption of reaction species onto electron-deficient Pt atoms. Journal of Catalysis, 2022, 413, 127-137.	6.2	21
20	Cross-Aldol Condensation of Acetone and n-Butanol into Aliphatic Ketones over Supported Cu Catalysts on Ceria-Zirconia. Catalysts, 2017, 7, 249.	3.5	19
21	Hydrogenation of the LOHC Compound Monobenzyl Toluene over ZrO ₂ â€supported Ru Nanoparticles: A Consequence of Zirconium Hydroxide's Surface Hydroxyl Group and Surface Area. ChemCatChem, 2018, 10, 3406-3410.	3.7	19
22	Hydrogenation of 2-benzylpyridine over alumina-supported Ru catalysts: Use of Ru3(CO)12 as a Ru precursor. Applied Catalysis A: General, 2017, 547, 183-190.	4.3	18
23	One-pot synthesis of ethylbenzene/1-phenylethanol and \hat{I}^3 -butyrolactone from simultaneous acetophenone hydrogenation and 1,4-butanediol dehydrogenation over copper based catalysts: effects of the support. RSC Advances, 2017, 7, 35346-35356.	3.6	17
24	Phases of Cu/Zn/Al/Zr precursors linked to the property and activity of their final catalysts in CO2 hydrogenation to methanol. Catalysis Today, 2020, 347, 70-78.	4.4	17
25	Benefits of the SiO2-supported nickel phosphide catalyst on ethylene oligomerization. Applied Catalysis A: General, 2020, 591, 117376.	4.3	16
26	Etherification of biomass-derived furanyl alcohols with aliphatic alcohols over silica-supported nickel phosphide catalysts: Effect of surplus P species on the acidity. Applied Catalysis A: General, 2020, 603, 117763.	4.3	16
27	Highly efficient and robust Pt ensembles on mesoporous alumina for reversible H2 charge and release of commercial benzyltoluene molecules. Applied Catalysis B: Environmental, 2022, 305, 121061.	20.2	16
28	Esterification of acetic acid with methanol to methyl acetate on Pd-modified zeolites: effect of Brønsted acid site strength on activity. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112, 499-510.	1.7	15
29	Activity of coprecipitated CuO/ZnO catalysts in the decomposition of dimethylhexane-1,6-dicarbamate. Catalysis Communications, 2015, 70, 34-39.	3.3	14
30	Coupling of 1,4-Butanediol Dehydrogenation with Nitrobenzene Hydrogenation for Simultaneous Synthesis of \hat{I}^3 -Butyrolactone and Aniline over Promoted Cu-MgO Catalysts: Effect of Promoters. Catalysis Letters, 2017, 147, 90-101.	2.6	14
31	Ethylene Oligomerization over SiO ₂ â^'Al ₂ O ₃ Supported Ni ₂ P Catalyst. ChemCatChem, 2020, 12, 135-140.	3.7	14
32	Hydrogen storage into monobenzyltoluene over Ru catalyst supported on SiO2-ZrO2 mixed oxides with different Si/Zr ratios. Korean Journal of Chemical Engineering, 2020, 37, 1427-1435.	2.7	14
33	PLS-based kinetics modeling and optimization of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst. Korean Journal of Chemical Engineering, 2011, 28, 2142-2147.	2.7	13
34	Phosgene-free decomposition of dimethylhexane-1,6-dicarbamate over ZnO. Research on Chemical Intermediates, 2016, 42, 57-70.	2.7	12
35	Aqueous phase reforming of ethylene glycol on Pt/CeO ₂ â€"ZrO ₂ : effects of cerium to zirconium molar ratio. RSC Advances, 2015, 5, 54806-54815.	3.6	11
36	Effect of Glycerol on Coke Characteristics in the Aromatization of Aqueous Glycerol Solution. Topics in Catalysis, 2017, 60, 658-665.	2.8	11

#	Article	IF	Citations
37	One-step selective synthesis of 2-chlorobenzonitrile from 2-chlorotoluene <i>via</i> ammoxidation. New Journal of Chemistry, 2018, 42, 1892-1901.	2.8	11
38	Sustainable Catalytic Transformation of Biomassâ€Derived 5â€Hydroxymethylfurfural to 2,5â€Bis(hydroxymethyl)tetrahydrofuran. ChemSusChem, 2022, 15, .	6.8	11
39	Efficient hydrogen charge into monobenzyltoluene over Ru/MgO catalysts synthesized by thermolysis of Ru3(CO)12 on porous Mg(OH)2 powder. Advanced Powder Technology, 2020, 31, 1682-1692.	4.1	10
40	Effect of Mg/Al Atomic Ratio of Mg–Al Hydrotalcites on Their Catalytic Properties for the Isomerization of Glucose to Fructose. Journal of Nanoscience and Nanotechnology, 2017, 17, 8242-8247.	0.9	9
41	Direct Conversion of CO2 into Dimethyl Ether over Al2O3/Cu/ZnO Catalysts Prepared by Sequential Precipitation. Catalysts, 2019, 9, 524.	3.5	9
42	Dehydrogenation of 2-[(n-Methylcyclohexyl)Methyl]Piperidine over Mesoporous Pd-Al2O3 Catalysts Prepared by Solvent Deficient Precipitation: Influence of Calcination Conditions. Catalysts, 2019, 9, 719.	3.5	8
43	Facile Structure Tuning of a Methanolâ€Synthesis Catalyst towards the Direct Synthesis of Dimethyl Ether from Syngas. ChemCatChem, 2017, 9, 4484-4489.	3.7	8
44	Advanced heterolytic H2 adsorption of K-added Ru/MgO catalysts for accelerating hydrogen storage into aromatic benzyltoluenes. Journal of Energy Chemistry, 2022, 71, 333-343.	12.9	8
45	Feasible coupling of CH4/H2 mixtures to H2 storage in liquid organic hydrogen carrier systems. Journal of Power Sources, 2022, 541, 231721.	7.8	8
46	Hydrogenation of levulinic acid with and without external hydrogen over Ni/SBA-15 catalyst. Applied Petrochemical Research, 2018, 8, 153-162.	1.3	7
47	Operation of bio-aviation fuel manufacturing facility via hydroprocessed esters and fatty acids process and optimization of fuel property for turbine engine test. Korean Journal of Chemical Engineering, 2021, 38, 1205-1223.	2.7	7
48	An efficient Cu CeO2 citrate catalyst for higher aliphatic ketone synthesis via alkali-free alkylation of acetone with butanol. Materials Chemistry and Physics, 2019, 229, 402-411.	4.0	6
49	Effects of Al3+ precipitation onto primitive amorphous Cu-Zn precipitate on methanol synthesis over Cu/ZnO/Al2O3 catalyst. Korean Journal of Chemical Engineering, 2019, 36, 191-196.	2.7	6
50	Efficient Production of Adipic Acid by a Twoâ€Step Catalytic Reaction of Biomassâ€Derived 2,5â€Furandicarboxylic Acid. ChemSusChem, 2022, , .	6.8	6
51	Deoxygenation of Fatty Acid Over Three-Dimensionally Ordered Mesoporous Carbon Supported Palladium Catalysts. Topics in Catalysis, 2017, 60, 677-684.	2.8	5
52	An Efficient Catalytic Approach for Epoxidation of Styrene over Activated Marble Powder. ChemistrySelect, 2018, 3, 8473-8478.	1.5	4
53	Characteristics of exfoliated HNb3O8 nanosheet derived from amorphous niobic acid and its application to dehydration of 2-heptanol. Korean Journal of Chemical Engineering, 2019, 36, 843-850.	2.7	4
54	Yttria-Stabilized Zirconia of Balanced Acid-Base Pair for Selective Dehydration of 4-Methyl-2-pentanol to 4-Methyl-1-pentene. Catalysts, 2022, 12, 559.	3.5	3

#	Article	IF	CITATIONS
55	Stable Performance of Supported PdOx Catalyst on Mesoporous Silica-Alumina of Water Tolerance for Methane Combustion under Wet Conditions. Catalysts, 2021, 11, 670.	3.5	2
56	2â€(<i>N</i> à€Methylbenzyl)pyridine: A Potential Liquid Organic Hydrogen Carrier with Fast H ₂ Release and Stable Activity in Consecutive Cycles. ChemSusChem, 2018, 11, 641-641.	6.8	1
57	Enhanced activity of CuO/ZnO catalyst on the decomposition of dimethylhexane-1,6-dicarbamate into dimethylhexane-1,6-diisocyanate. Research on Chemical Intermediates, 2018, 44, 3787-3796.	2.7	1
58	Kinetic Modeling of Ethylene Oligomerization to High-Chain-Length Olefins Over Al-SBA-15-Supported Ni Catalyst with LiAlH4 Co-catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 499-511.	1.7	1
59	Methane Combustion over Pd Catalysts Supported on Mesoporous Alumina. Transactions of the Korean Society of Automotive Engineers, 2020, 28, 353-357.	0.3	1
60	5â€(Chloromethyl)Furfural as a Potential Source for Continuous Hydrogenation of 5â€(Hydroxymethyl)Furfural to 2,5â€Bis(Hydroxymethyl)Furan. ChemPlusChem, 2022, 87, .	2.8	1