Xiuying Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/339821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Soil Heavy Metal Pollution on Food Safety in China. PLoS ONE, 2015, 10, e0135182.	2.5	198
2	Assessment of cadmium (Cd) concentration in arable soil in China. Environmental Science and Pollution Research, 2015, 22, 4932-4941.	5.3	125
3	Concentration of heavy metals in vegetables and potential health risk assessment in China. Environmental Geochemistry and Health, 2018, 40, 313-322.	3.4	98
4	Analysis of acid rain patterns in northeastern China using a decision tree method. Atmospheric Environment, 2012, 46, 590-596.	4.1	79
5	Pollution and health risk assessment of heavy metals in urban soil in China. Human and Ecological Risk Assessment (HERA), 2016, 22, 424-434.	3.4	72
6	Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980. Atmospheric Chemistry and Physics, 2017, 17, 9365-9378.	4.9	54
7	Multiangle land use-linked carbon balance examination in Nanjing City, China. Land Use Policy, 2019, 84, 305-315.	5.6	50
8	Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their response to climate change in <scp>C</scp> hina. Land Degradation and Development, 2018, 29, 3489-3502.	3.9	42
9	Estimating Ground-Level Ozone Concentrations in Eastern China Using Satellite-Based Precursors. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 4754-4763.	6.3	40
10	Spatial-Temporal Variations of Chlorophyll-a in the Adjacent Sea Area of the Yangtze River Estuary Influenced by Yangtze River Discharge. International Journal of Environmental Research and Public Health, 2015, 12, 5420-5438.	2.6	39
11	Chromium occurrences in arable soil and its influence on food production in China. Environmental Earth Sciences, 2016, 75, 1.	2.7	35
12	Remote-sensing assessment of forest damage by Typhoon Saomai and its related factors at landscape scale. International Journal of Remote Sensing, 2013, 34, 7874-7886.	2.9	31
13	The composition, seasonal variation, and potential sources of the atmospheric wet sulfur (S) and nitrogen (N) deposition in the southwest of China. Environmental Science and Pollution Research, 2016, 23, 6363-6375.	5.3	31
14	Estimating global surface ammonia concentrations inferred from satellite retrievals. Atmospheric Chemistry and Physics, 2019, 19, 12051-12066.	4.9	31
15	Ground Ammonia Concentrations over China Derived from Satellite and Atmospheric Transport Modeling. Remote Sensing, 2017, 9, 467.	4.0	30
16	Bulk sulfur (S) deposition in China. Atmospheric Environment, 2016, 135, 41-49.	4.1	29
17	Satellite-based detection of bamboo expansion over the past 30 years in Mount Tianmushan, China. International Journal of Remote Sensing, 2016, 37, 2908-2922.	2.9	29
18	Assessment of arsenic (As) occurrence in arable soil and its related health risk in China. Environmental Geochemistry and Health, 2016, 38, 691-702	3.4	29

XIUYING ZHANG

#	Article	IF	CITATIONS
19	Estimation of monthly bulk nitrate deposition in China based on satellite NO2 measurement by the Ozone Monitoring Instrument. Remote Sensing of Environment, 2017, 199, 93-106.	11.0	29
20	Spatial Distribution of Mercury (Hg) Concentration in Agricultural Soil and Its Risk Assessment on Food Safety in China. Sustainability, 2016, 8, 795.	3.2	26
21	Dry Particulate Nitrate Deposition in China. Environmental Science & Technology, 2017, 51, 5572-5581.	10.0	24
22	A Review of Spatial Variation of Inorganic Nitrogen (N) Wet Deposition in China. PLoS ONE, 2016, 11, e0146051.	2.5	23
23	Decadal Trends in Wet Sulfur Deposition in China Estimated From OMI SO ₂ Columns. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,796.	3.3	23
24	Long-term ambient SO2 concentration and its exposure risk across China inferred from OMI observations from 2005 to 2018. Atmospheric Research, 2021, 247, 105150.	4.1	20
25	Reviewing global estimates of surface reactive nitrogen concentration and deposition using satellite retrievals. Atmospheric Chemistry and Physics, 2020, 20, 8641-8658.	4.9	16
26	Identification of Potential Sources of Mercury (Hg) in Farmland Soil Using a Decision Tree Method in China. International Journal of Environmental Research and Public Health, 2016, 13, 1111.	2.6	14
27	Relationship between nitrogen deposition and LUCC and its impact on terrestrial ecosystem carbon budgets in China. Science China Earth Sciences, 2016, 59, 2285-2294.	5.2	14
28	Improvement of ecological geographic regionalization based on remote sensing and canonical correspondence analysis: A case study in China. Science China Earth Sciences, 2016, 59, 1745-1753.	5.2	14
29	Evaluation of Lead in Arable Soils, China. Clean - Soil, Air, Water, 2015, 43, 1232-1240.	1.1	13
30	Comparison analysis of the global carbon dioxide concentration column derived from SCIAMACHY, AIRS, and GOSAT with surface station measurements. International Journal of Remote Sensing, 2015, 36, 1406-1423.	2.9	13
31	Global estimates of dry ammonia deposition inferred from space-measurements. Science of the Total Environment, 2020, 730, 139189.	8.0	11
32	Spatial distribution and risk assessment of copper in agricultural soils, China. Human and Ecological Risk Assessment (HERA), 2017, 23, 1404-1416.	3.4	8
33	Estimating 40 years of nitrogen deposition in global biomes using the SCIAMACHY NO ₂ column. International Journal of Remote Sensing, 2016, 37, 4964-4978.	2.9	7
34	Detecting Sulfuric and Nitric Acid Rain Stresses on Quercus glauca through Hyperspectral Responses. Sensors, 2018, 18, 830.	3.8	7
35	Global and Regional Patterns of Soil Nitrous Acid Emissions and Their Acceleration of Rural Photochemical Reactions. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	7
36	Declining precipitation acidity from H2SO4 and HNO3 across China inferred by OMI products. Atmospheric Environment, 2020, 224, 117359.	4.1	3

#	Article	IF	CITATIONS
37	Comparison analysis of global methane concentration derived from SCIAMACHY, AIRS, and GOSAT with surface station measurements. International Journal of Remote Sensing, 2021, 42, 1823-1840.	2.9	3
38	Global Wetâ€Reduced Nitrogen Deposition Derived From Combining Satellite Measurements With Output From a Chemistry Transport Model. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033977.	3.3	2