List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/339777/publications.pdf Version: 2024-02-01

IDA CENTA

#	Article	IF	CITATIONS
1	Design and optimization of 3D-bioprinted scaffold framework based on a new natural polymeric bioink. Journal of Pharmacy and Pharmacology, 2022, 74, 57-66.	2.4	1
2	Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers. International Journal of Molecular Sciences, 2022, 23, 1290.	4.1	27
3	Engineered Full Thickness Electrospun Scaffold for Esophageal Tissue Regeneration: From In Vitro to In Vivo Approach. Pharmaceutics, 2022, 14, 252.	4.5	3
4	CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles. Pharmaceuticals, 2022, 15, 103.	3.8	20
5	A Design of Experiment (DOE) approach to correlate PLA-PCL electrospun fibers diameter and mechanical properties for soft tissue regeneration purposes. Journal of Drug Delivery Science and Technology, 2022, 68, 103060.	3.0	8
6	Shape memory engineered scaffold (SMES) for potential repair of neural tube defects. Reactive and Functional Polymers, 2022, 173, 105223.	4.1	3
7	Microfluidic-assisted synthesis of multifunctional iodinated contrast agent polymeric nanoplatforms. International Journal of Pharmaceutics, 2021, 599, 120447.	5.2	9
8	A study focused on macrophages modulation induced by the Polymeric Electrospun Matrices (EL-Ms) for application in tissue regeneration: In vitro proof of concept. International Journal of Pharmaceutics, 2021, 603, 120712.	5.2	9
9	Tubular Electrospun Vancomycin-Loaded Vascular Grafts: Formulation Study and Physicochemical Characterization. Polymers, 2021, 13, 2073.	4.5	10
10	Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations. International Journal of Molecular Sciences, 2021, 22, 8064.	4.1	31
11	Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics, 2021, 13, 1341.	4.5	20
12	Hyaluronic Acid-Based Nanoparticles for Protein Delivery: Systematic Examination of Microfluidic Production Conditions. Pharmaceutics, 2021, 13, 1565.	4.5	12
13	Tobramycin Supplemented Small-Diameter Vascular Grafts for Local Antibiotic Delivery: A Preliminary Formulation Study. International Journal of Molecular Sciences, 2021, 22, 13557.	4.1	5
14	The Effect of Process Parameters on Alignment of Tubular Electrospun Nanofibers for Tissue Regeneration Purposes. Journal of Drug Delivery Science and Technology, 2020, 58, 101781.	3.0	26
15	Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics, 2020, 12, 735.	4.5	569
16	High Efficiency Vibrational Technology (HEVT) for Cell Encapsulation in Polymeric Microcapsules. Pharmaceutics, 2020, 12, 469.	4.5	6
17	On-Chip Synthesis of Hyaluronic Acid-Based Nanoparticles for Selective Inhibition of CD44+ Human Mesenchymal Stem Cell Proliferation. Pharmaceutics, 2020, 12, 260.	4.5	19
18	Tissue Engineered Esophageal Patch by Mesenchymal Stromal Cells: Optimization of Electrospun Patch Engineering. International Journal of Molecular Sciences, 2020, 21, 1764.	4.1	18

#	Article	IF	CITATIONS
19	Graphene Nanoplatelets for the Development of Reinforced PLA–PCL Electrospun Fibers as the Next-Generation of Biomedical Mats. Polymers, 2020, 12, 1390.	4.5	20
20	Biocompatible polymeric electrospun matrices: Micro–nanotopography effect on cell behavior. Journal of Applied Polymer Science, 2020, 137, 49223.	2.6	16
21	Microfluidic encapsulation method to produce stable liposomes containing iohexol. Journal of Drug Delivery Science and Technology, 2019, 54, 101340.	3.0	13
22	Release Profile of Gentamicin Sulfate from Polylactide-co-Polycaprolactone Electrospun Nanofiber Matrices. Pharmaceutics, 2019, 11, 161.	4.5	38
23	Poly(gamma-glutamic acid) based thermosetting hydrogels for injection: Rheology and functional parameters evaluation. Reactive and Functional Polymers, 2019, 140, 93-102.	4.1	16
24	Staggered Herringbone Microfluid Device for the Manufacturing of Chitosan/TPP Nanoparticles: Systematic Optimization and Preliminary Biological Evaluation. International Journal of Molecular Sciences, 2019, 20, 6212.	4.1	21
25	lvermectin controlled release implants based on poly-D, l -lactide and poly-Îμ-caprolactone. Journal of Drug Delivery Science and Technology, 2018, 46, 101-110.	3.0	12
26	The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles. Pharmaceutics, 2018, 10, 267.	4.5	73
27	Intra-Articular Formulation of GE11-PLGA Conjugate-Based NPs for Dexamethasone Selective Targeting—In Vitro Evaluation. International Journal of Molecular Sciences, 2018, 19, 2304.	4.1	17
28	Gentamicin Sulfate PEG-PLGA/PLGA-H Nanoparticles: Screening Design and Antimicrobial Effect Evaluation toward Clinic Bacterial Isolates. Nanomaterials, 2018, 8, 37.	4.1	40
29	GE11 Peptide as an Active Targeting Agent in Antitumor Therapy: A Minireview. Pharmaceutics, 2018, 10, 2.	4.5	69
30	Hyaluronic Acid-Decorated Chitosan Nanoparticles for CD44-Targeted Delivery of Everolimus. International Journal of Molecular Sciences, 2018, 19, 2310.	4.1	58
31	Design of a Bioabsorbable Multilayered Patch for Esophagus Tissue Engineering. Macromolecular Bioscience, 2017, 17, 1600426.	4.1	14
32	Natural based eumelanin nanoparticles functionalization and preliminary evaluation as carrier for gentamicin. Reactive and Functional Polymers, 2017, 114, 38-48.	4.1	16
33	Gentamicin-Loaded Thermosetting Hydrogel and Moldable Composite Scaffold: Formulation Study and Biologic Evaluation. Journal of Pharmaceutical Sciences, 2017, 106, 1596-1607.	3.3	33
34	Polyethylene Glycol-Poly-Lactide-co-Glycolide Block Copolymer-Based Nanoparticles as a Potential Tool for Off-Label Use of N-Acetylcysteine in the Treatment of Diastrophic Dysplasia. Journal of Pharmaceutical Sciences, 2017, 106, 3631-3641.	3.3	11
35	Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals, 2017, 10, 96.	3.8	120
36	Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization. International Journal of Pharmaceutics, 2016, 511, 1112-1123.	5.2	31

#	Article	IF	CITATIONS
37	CNA-loaded PLGA nanoparticles improve humoral response againstS. aureus-mediated infections in a mouse model: subcutaneous vs. nasal administration strategy. Journal of Microencapsulation, 2016, 33, 750-762.	2.8	6
38	Formulation and inÂvitro characterization of a composite biodegradable scaffold as antibiotic delivery system and regenerative device for bone. Journal of Drug Delivery Science and Technology, 2016, 35, 124-133.	3.0	14
39	Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus–oocyte complexes culture. Journal of Microencapsulation, 2016, 33, 137-145.	2.8	21
40	An experimental design approach to the preparation of pegylated polylactide-co-glicolide gentamicin loaded microparticles for local antibiotic delivery. Materials Science and Engineering C, 2016, 58, 909-917.	7.3	29
41	Controlled delivery systems for tissue repair and regeneration. Journal of Drug Delivery Science and Technology, 2016, 32, 206-228.	3.0	23
42	Smart Biodegradable Nanoparticulate Materials: Poly-lactide-co-glycolide Functionalization with Selected Peptides. Current Nanoscience, 2016, 12, 347-356.	1.2	7
43	InÂvitro characterization of an injectable in situ forming composite system for bone reconstruction. Polymer Degradation and Stability, 2015, 119, 151-158.	5.8	12
44	Stability Evaluation of Ivermectin-Loaded Biodegradable Microspheres. AAPS PharmSciTech, 2015, 16, 1129-1139.	3.3	11
45	Preliminary investigation on the design of biodegradable microparticles for ivermectin delivery: set up of formulation parameters. Drug Development and Industrial Pharmacy, 2015, 41, 1182-1192.	2.0	7
46	Preparation and Characterization of an Advanced Medical Device for Bone Regeneration. AAPS PharmSciTech, 2014, 15, 75-82.	3.3	7
47	Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Materials Science and Engineering C, 2014, 34, 130-139.	7.3	23
48	Adhesive microbeads for the targeting delivery of anticaries agents of vegetable origin. Food Chemistry, 2013, 138, 898-904.	8.2	15
49	Sub-unit vaccine against S. aureus-mediated infections: Set-up of nano-sized polymeric adjuvant. International Journal of Pharmaceutics, 2013, 452, 390-401.	5.2	19
50	Microencapsulation of a hydrophilic model molecule through vibration nozzle and emulsion phase inversion technologies. Journal of Microencapsulation, 2013, 30, 559-570.	2.8	17
51	Design of 3 <scp>D</scp> Hybrid Composite Scaffolds: Effect of Composition on Scaffold Structure and Cell Proliferation. Macromolecular Symposia, 2013, 334, 106-116.	0.7	3
52	Nanostructured Polymeric Functional Micelles for Drug Delivery Applications. Macromolecular Symposia, 2013, 334, 17-23.	0.7	14
53	Long-Term Effect of Gamma Irradiation on the Functional Properties and Cytocompatibility of Multiblock Co-Polymer Films. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 2223-2240.	3.5	11
54	Polymer Scaffolds for Bone Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials. 2011. , 259-285.	1.0	3

#	Article	IF	CITATIONS
55	A preliminary study on the morphological and release properties of hydroxyapatite–alendronate composite materials. Journal of Microencapsulation, 2011, 28, 395-405.	2.8	14
56	Induction of an <i>in vitro</i> reversible hypometabolism through chitosan-based nanoparticles. Journal of Microencapsulation, 2011, 28, 229-239.	2.8	11
57	Biodegradable microspheres for prolidase delivery to human cultured fibroblasts. Journal of Pharmacy and Pharmacology, 2010, 56, 597-603.	2.4	12
58	Effect of porogen on the physico-chemical properties and degradation performance of PLGA scaffolds. Polymer Degradation and Stability, 2010, 95, 694-701.	5.8	57
59	Site-directed PEGylation as successful approach to improve the enzyme replacement in the case of prolidase. International Journal of Pharmaceutics, 2008, 358, 230-237.	5.2	22
60	Non-viral dried powders for respiratory gene delivery prepared by cationic and chitosan loaded liposomes. International Journal of Pharmaceutics, 2008, 364, 108-118.	5.2	30
61	γ-Irradiation of PEGd,IPLA and PEG-PLGA Multiblock Copolymers: I. Effect of Irradiation Doses. AAPS PharmSciTech, 2008, 9, 718-25.	3.3	43
62	γ-irradiation of PEGd,IPLA and PEG-PLGA Multiblock Copolymers: II. Effect of Oxygen and EPR Investigation. AAPS PharmSciTech, 2008, 9, 1110-1118.	3.3	23
63	Ex vivo evaluation of prolidase loaded chitosan nanoparticles for the enzyme replacement therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 58-65.	4.3	38
64	Polyethylenglycol-co-poly-D,L-lactide copolymer based microspheres: Preparation, characterization and delivery of a model protein. Journal of Microencapsulation, 2008, 25, 330-338.	2.8	16
65	Chitosan glutamate nanoparticles for protein delivery: Development and effect on prolidase stability. Journal of Microencapsulation, 2007, 24, 553-564.	2.8	44
66	Investigation of the degradation behaviour of poly(ethylene glycol-co-d,l-lactide) copolymer. Polymer Degradation and Stability, 2007, 92, 1660-1668.	5.8	44
67	The role of emerging techniques in the investigation of prolidase deficiency: From diagnosis to the development of a possible therapeutical approach. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 832, 1-8.	2.3	31
68	5-methyl-pyrrolidinone chitosan films as carriers for buccal administration of proteins. AAPS PharmSciTech, 2006, 7, E107-E113.	3.3	27
69	Surface characterization by atomic force microscopy of sterilized PLGA microspheres. Journal of Microencapsulation, 2006, 23, 123-133.	2.8	12
70	Intracellular delivery of liposome-encapsulated prolidase in cultured fibroblasts from prolidase-deficient patients. Journal of Controlled Release, 2005, 102, 181-190.	9.9	25
71	The effect of Î ³ -irradiation on PLGA/PEG microspheres containing ovalbumin. Journal of Controlled Release, 2005, 107, 78-90.	9.9	46
72	Preparation andin vitroevaluation of thiolated chitosan microparticles. Journal of Microencapsulation, 2005, 22, 459-470.	2.8	34

#	Article	IF	CITATIONS
73	Poly(lactide-co-glycolide) microspheres containing bupivacaine: comparison between gamma and beta irradiation effects. Journal of Controlled Release, 2003, 90, 281-290.	9.9	54
74	PLGA microspheres for oral osteopenia treatment: preliminary "in vitroâ€∤"in vivo―evaluation. International Journal of Pharmaceutics, 2003, 256, 153-160.	5.2	16
75	Radiation-induced free radical reactions in polymer/drug systems for controlled release: an EPR investigation. Radiation Physics and Chemistry, 2003, 67, 61-72.	2.8	28
76	Miconazole-loaded 6-oxychitin–chitosan microcapsules. Carbohydrate Polymers, 2003, 52, 11-18.	10.2	31
77	Periodontal delivery of ipriflavone: new chitosan/PLGA film delivery system for a lipophilic drug. International Journal of Pharmaceutics, 2003, 252, 1-9.	5.2	109
78	Evaluation of enzyme stability during preparation of polylactide-co-glycolide microspheres. Journal of Microencapsulation, 2002, 19, 591-602.	2.8	9
79	Gamma irradiation effects and EPR investigation on poly(lactide-co-glycolide) microspheres containing bupivacaine. Il Farmaco, 2002, 57, 427-433.	0.9	22
80	Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. International Journal of Pharmaceutics, 2002, 246, 37-45.	5.2	139
81	Emulsion Spray-Drying for the Preparation of Albumin-Loaded PLGA Microspheres. Drug Development and Industrial Pharmacy, 2001, 27, 745-750.	2.0	44
82	Long-term release of clodronate from biodegradable microspheres. AAPS PharmSciTech, 2001, 2, 6-14.	3.3	52
83	Gamma irradiation effects on stability of poly(lactide-co-glycolide) microspheres containing clonazepam. Journal of Controlled Release, 2001, 75, 317-330.	9.9	80
84	Enzyme loaded biodegradable microspheres in vitro. Journal of Controlled Release, 2001, 77, 287-295.	9.9	44
85	Study on glycolic acid delivery by liposomes and microspheres. International Journal of Pharmaceutics, 2000, 196, 51-61.	5.2	88
86	Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres. Carbohydrate Polymers, 1998, 36, 81-88.	10.2	112
87	Gamma irradiation effects on poly(dl-lactictide-co-glycolide) microspheres. Journal of Controlled Release, 1998, 56, 219-229.	9.9	135
88	Preparation and characterization of ampicillin loaded methylpyrrolidinone chitosan and chitosan microspheres. Biomaterials, 1998, 19, 157-161.	11.4	123
89	Different Molecular Weight Chitosan Microspheres: Influence on Drug Loading and Drug Release. Drug Development and Industrial Pharmacy, 1998, 24, 779-784.	2.0	55
90	A multiple emulsion method to entrap a lipophilic compound into chitosan microspheres. International Journal of Pharmaceutics, 1997, 152, 237-246.	5.2	63

#	Article	IF	CITATIONS
91	Investigation on Process Parameters Involved in Polylactide-Co-Glycolide Microspheres Preparation. Drug Development and Industrial Pharmacy, 1995, 21, 615-622.	2.0	24
92	Testing of "In Vitro―Dissolution Behaviour of Microparticulate Drug Delivery Systems. Drug Development and Industrial Pharmacy, 1995, 21, 1223-1233.	2.0	22
93	Spray-Dried Albumin Microspheres for the Intra-Articular Delivery of Dexamethasone. Journal of Microencapsulation, 1994, 11, 445-454.	2.8	56
94	Evaluation of spray drying as a method for polylactide and polylactide-co-glycolide microsphere preparation. Journal of Microencapsulation, 1993, 10, 487-497.	2.8	70
95	Solvent evaporation, solvent extraction and spray drying for polylactide microsphere preparation. International Journal of Pharmaceutics, 1992, 84, 151-159.	5.2	58
96	Use of polylactic acid for the preparation of microparticulate drug delivery systems. Journal of Microencapsulation, 1991, 9, 153-166.	2.8	62
97	Particulate contamination from siliconized rubber stoppers. International Journal of Pharmaceutics, 1991, 74, 175-181.	5.2	4
98	Aluminium, cadmium and lead in large volume parenterals: contamination levels and sources. International Journal of Pharmaceutics, 1989, 54, 143-148.	5.2	16
99	Particulate matter contamination of small volume patenterais. International Journal of Pharmaceutics, 1989, 51, 55-61.	5.2	2
100	Particulate contamination in parenteral type medical devices. International Journal of Pharmaceutics, 1988, 48, 255-265.	5.2	2