

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3397491/publications.pdf Version: 2024-02-01

Yili

#	Article	IF	CITATIONS
1	Antimicrobial effect of surgical masks coated with nanoparticles. Journal of Hospital Infection, 2006, 62, 58-63.	1.4	487
2	Effects of wearing N95 and surgical facemasks on heart rate, thermal stress and subjective sensations. International Archives of Occupational and Environmental Health, 2005, 78, 501-509.	1.1	279
3	Silk Fibroin-Based Nanoparticles for Drug Delivery. International Journal of Molecular Sciences, 2015, 16, 4880-4903.	1.8	230
4	Moisture Management Tester: A Method to Characterize Fabric Liquid Moisture Management Properties. Textile Reseach Journal, 2005, 75, 57-62.	1.1	222
5	An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux. Experimental Thermal and Fluid Science, 2008, 32, 1638-1646.	1.5	203
6	Polyelectrolyte-Bridged Metal/Cotton Hierarchical Structures for Highly Durable Conductive Yarns. ACS Applied Materials & Interfaces, 2010, 2, 529-535.	4.0	184
7	Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation. International Journal of Heat and Mass Transfer, 2000, 43, 2989-3000.	2.5	158
8	A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sensors and Actuators B: Chemical, 2011, 159, 328-335.	4.0	154
9	Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube. International Journal of Heat and Mass Transfer, 2007, 50, 2480-2491.	2.5	139
10	Silkâ€Based Biomaterials in Biomedical Textiles and Fiberâ€Based Implants. Advanced Healthcare Materials, 2015, 4, 1134-1151.	3.9	130
11	In vivo protective performance of N95 respirator and surgical facemask. American Journal of Industrial Medicine, 2006, 49, 1056-1065.	1.0	122
12	Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. Journal of Hazardous Materials, 2014, 274, 115-123.	6.5	117
13	One-Step Modification of Fabrics with Bioinspired Polydopamine@Octadecylamine Nanocapsules for Robust and Healable Self-Cleaning Performance. Small, 2015, 11, 426-431.	5.2	117
14	Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. Nano-Micro Letters, 2022, 14, 61.	14.4	113
15	Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles. Polymer, 2007, 48, 3317-3323.	1.8	112
16	Ultrasensitive detection of E. coli O157:H7 with biofunctional magnetic bead concentration via nanoporous membrane based electrochemical immunosensor. Biosensors and Bioelectronics, 2013, 41, 532-537.	5.3	110
17	Perceptions of temperature, moisture and comfort in clothing during environmental transients. Ergonomics, 2005, 48, 234-248.	1.1	108
18	Numerical Simulation of 3D Dynamic Garment Pressure. Textile Reseach Journal, 2002, 72, 245-252.	1.1	102

#	Article	IF	CITATIONS
19	A Two-Stage Sorption Model of the Coupled Diffusion of Moisture and Heat in Wool Fabrics. Textile Reseach Journal, 1992, 62, 211-217.	1.1	101
20	Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2. International Journal of Nanomedicine, 2015, 10, 3171.	3.3	97
21	Highly Breathable and Stretchable Strain Sensors with Insensitive Response to Pressure and Bending. Advanced Functional Materials, 2021, 31, 2007622.	7.8	96
22	An improved test method for characterizing the dynamic liquid moisture transfer in porous polymeric materials. Polymer Testing, 2006, 25, 677-689.	2.3	95
23	Assessing the performance of textiles incorporating phase change materials. Polymer Testing, 2004, 23, 541-549.	2.3	94
24	Simultaneous Heat and Moisture Transfer with Moisture Sorption, Condensation, and Capillary Liquid Diffusion in Porous Textiles. Textile Reseach Journal, 2003, 73, 515-524.	1.1	92
25	Effect of sock on biomechanical responses of foot during walking. Clinical Biomechanics, 2006, 21, 314-321.	0.5	90
26	Effect of phase-change material on energy consumption of intelligent thermal-protective clothing. Polymer Testing, 2006, 25, 580-587.	2.3	90
27	Heat transfer of microencapsulated PCM slurry flow in a circular tube. AICHE Journal, 2008, 54, 1110-1120.	1.8	87
28	Carbon footprint reduction in the textile process chain: Recycling of textile materials. Fibers and Polymers, 2012, 13, 1065-1070.	1.1	86
29	Nano-curcumin prepared via supercritical: Improved anti-bacterial, anti-oxidant and anti-cancer efficacy. International Journal of Pharmaceutics, 2015, 496, 732-740.	2.6	86
30	Mathematical Simulation of Heat and Moisture Transfer in a Human-Clothing-Environment System. Textile Reseach Journal, 1998, 68, 389-397.	1.1	85
31	Influence of Thickness and Porosity on Coupled Heat and Liquid Moisture Transfer in Porous Textiles. Textile Reseach Journal, 2002, 72, 435-446.	1.1	83
32	Coolmax/graphene-oxide functionalized textile humidity sensor with ultrafast response for human activities monitoring. Chemical Engineering Journal, 2021, 412, 128639.	6.6	83
33	Neural Network Predictions of Human Psychological Perceptions of Clothing Sensory Comfort. Textile Reseach Journal, 2003, 73, 31-37.	1.1	81
34	Isolation and characterization of biofunctional keratin particles extracted from wool wastes. Powder Technology, 2013, 246, 356-362.	2.1	80
35	Quantification of environmental impact and ecological sustainability for textile fibres. Ecological Indicators, 2012, 13, 66-74.	2.6	79
36	Carbon footprint of shopping (grocery) bags in China, Hong Kong and India. Atmospheric Environment, 2011, 45, 469-475.	1.9	78

#	Article	IF	CITATIONS
37	Hierarchical Porous Poly(<scp>l</scp> -lactic acid) Nanofibrous Membrane for Ultrafine Particulate Aerosol Filtration. ACS Applied Materials & Interfaces, 2019, 11, 46261-46268.	4.0	77
38	An Improved Mathematical Simulation of the Coupled Diffusion of Moisture and Heat in Wool Fabric. Textile Reseach Journal, 1999, 69, 760-768.	1.1	76
39	Effects of graduated compression stockings with different pressure profiles on lower-limb venous structures and haemodynamics. Advances in Therapy, 2008, 25, 465-478.	1.3	75
40	Chitosan/polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments. Biomaterials, 2009, 30, 5004-5018.	5.7	72
41	Preparation and biodegradation of electrospun PLLA/keratin nonwoven fibrous membrane. Polymer Degradation and Stability, 2009, 94, 1800-1807.	2.7	72
42	Fabricating Superhydrophilic Wool Fabrics. Langmuir, 2010, 26, 4675-4679.	1.6	71
43	A MODEL OF COUPLED LIQUID MOISTURE AND HEAT TRANSFER IN POROUS TEXTILES WITH CONSIDERATION OF GRAVITY. Numerical Heat Transfer; Part A: Applications, 2003, 43, 501-523.	1.2	70
44	A Model of Heat and Moisture Transfer in Porous Textiles with Phase Change Materials. Textile Reseach Journal, 2004, 74, 447-457.	1.1	68
45	Microencapsulation of puerarin nanoparticles by poly(l-lactide) in a supercritical CO2 process. Acta Biomaterialia, 2009, 5, 2913-2919.	4.1	67
46	A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens. Acta Biomaterialia, 2010, 6, 2013-2019.	4.1	67
47	Human Action Recognition Using Deep Learning Methods on Limited Sensory Data. IEEE Sensors Journal, 2020, 20, 3101-3112.	2.4	63
48	Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres. Nanotechnology, 2008, 19, 455101.	1.3	62
49	Objective Evaluation of Skin Pressure Distribution of Graduated Elastic Compression Stockings. Dermatologic Surgery, 2005, 31, 615-624.	0.4	61
50	Surfaceâ€Grafted Polymerâ€Assisted Electroless Deposition of Metals for Flexible and Stretchable Electronics. Chemistry - an Asian Journal, 2012, 7, 862-870.	1.7	61
51	Moisture-Resilient Graphene-Dyed Wool Fabric for Strain Sensing. ACS Applied Materials & Interfaces, 2020, 12, 13265-13274.	4.0	60
52	Predicting Clothing Sensory Comfort with Artificial Intelligence Hybrid Models. Textile Reseach Journal, 2004, 74, 13-19.	1.1	59
53	A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. Biomaterials, 2013, 34, 9451-9461.	5.7	59
54	Physical Mechanisms of Moisture Diffusion into Hygroscopic Fabrics during Humidity Transients. Journal of the Textile Institute, 2000, 91, 302-316.	1.0	57

#	Article	IF	CITATIONS
55	Effectiveness of maternity support belts in reducing low back pain during pregnancy: a review. Journal of Clinical Nursing, 2009, 18, 1523-1532.	1.4	57
56	Moisture Buffering Behavior of Hygroscopic Fabric During Wear. Textile Reseach Journal, 1992, 62, 619-627.	1.1	54
57	Wicking in twisted yarns. Journal of Colloid and Interface Science, 2008, 318, 134-139.	5.0	54
58	Programming nanostructures of polymer brushes by dip-pen nanodisplacement lithography (DNL). Nanoscale, 2010, 2, 2614.	2.8	54
59	Fabrication of silk fibroin nanoparticles for controlled drug delivery. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	54
60	An implantable and controlled drug-release silk fibroin nanofibrous matrix to advance the treatment of solid tumour cancers. Biomaterials, 2016, 103, 33-43.	5.7	54
61	Application of organic nonsolvent in the process of solution-enhanced dispersion by supercritical CO2 to prepare puerarin fine particles. Journal of Supercritical Fluids, 2009, 49, 394-402.	1.6	52
62	A Natureâ€inspired, Flexible Substrate Strategy for Future Wearable Electronics. Small, 2019, 15, e1902440.	5.2	52
63	A microfluidic chip with poly(ethylene glycol) hydrogel microarray on nanoporous alumina membrane for cell patterning and drug testing. Sensors and Actuators B: Chemical, 2010, 143, 776-783.	4.0	51
64	Fabrication Techniques for Manufacturing Flexible Coils on Textiles for Inductive Power Transfer. IEEE Sensors Journal, 2018, 18, 2599-2606.	2.4	51
65	A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chemical Engineering Journal, 2021, 426, 130869.	6.6	51
66	A fractal model for the coupled heat and mass transfer in porous fibrous media. International Journal of Heat and Mass Transfer, 2011, 54, 1400-1409.	2.5	50
67	Environment and body contamination: A comparison of two different removal methods in three types of personal protective clothing. American Journal of Infection Control, 2014, 42, e39-e45.	1.1	49
68	A fuzzy neural network model for predicting clothing thermal comfort. Computers and Mathematics With Applications, 2007, 53, 1840-1846.	1.4	48
69	Strategy to introduce an hydroxyapatite–keratin nanocomposite into a fibrous membrane for bone tissue engineering. Journal of Materials Chemistry B, 2013, 1, 432-437.	2.9	48
70	Mathematical Simulation of the Perception of Fabric Thermal and Moisture Sensations. Textile Reseach Journal, 2002, 72, 327-334.	1.1	47
71	Novel infrared radiation properties of cotton fabric coated with nano Zn/ZnO particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 140-144.	2.3	47
72	A simultaneous measurement method to characterize touch properties of textile materials. Fibers and Polymers, 2014, 15, 1548-1559.	1.1	47

#	Article	IF	CITATIONS
73	Permeable graphited hemp fabrics-based, wearing-comfortable pressure sensors for monitoring human activities. Chemical Engineering Journal, 2021, 403, 126191.	6.6	47
74	Fabric Touch Tester: Integrated evaluation of thermal–mechanical sensory properties of polymeric materials. Polymer Testing, 2006, 25, 1081-1090.	2.3	46
75	Fiber Hygroscopicity and Perceptions of Dampness. Textile Reseach Journal, 1995, 65, 316-324.	1.1	45
76	Is double-gloving really protective? A comparison between the glove perforation rate among perioperative nurses with single and double gloves during surgery. American Journal of Surgery, 2012, 204, 210-215.	0.9	44
77	Modifying the Mechanical Properties of Silk Fiber by Genetically Disrupting the Ionic Environment for Silk Formation. Biomacromolecules, 2015, 16, 3119-3125.	2.6	44
78	The development of anti-heat stress clothing for construction workers in hot and humid weather. Ergonomics, 2016, 59, 479-495.	1.1	44
79	A three-dimensional biomechanical model for numerical simulation of dynamic pressure functional performances of graduated compression stocking (GCS). Fibers and Polymers, 2006, 7, 389-397.	1.1	43
80	Development of Fe3O4-poly(l-lactide) magnetic microparticles in supercritical CO2. Journal of Colloid and Interface Science, 2009, 330, 317-322.	5.0	43
81	Biodegradable weftâ€knitted intestinal stents: Fabrication and physical changes investigation <i>in vitro</i> degradation. Journal of Biomedical Materials Research - Part A, 2014, 102, 982-990.	2.1	43
82	Paclitaxel-loaded PLGA microspheres with a novel morphology to facilitate drug delivery and antitumor efficiency. RSC Advances, 2018, 8, 3274-3285.	1.7	43
83	Cotton Fabric Strength Loss from Treatment with Polycarboxylic Acids for Durable Press Performance. Textile Reseach Journal, 2000, 70, 957-961.	1.1	42
84	P-smart—a virtual system for clothing thermal functional design. CAD Computer Aided Design, 2006, 38, 726-739.	1.4	42
85	eâ€Textile embroidered wearable nearâ€field communication RFID antennas. IET Microwaves, Antennas and Propagation, 2019, 13, 99-104.	0.7	42
86	Influence of Fabric Mechanical Property on Clothing Dynamic Pressure Distribution and Pressure Comfort on Tight-Fit Sportswear. Journal of Fiber Science and Technology, 2004, 60, 293-299.	0.0	41
87	Recyclability Potential Index (RPI): The concept and quantification of RPI for textile fibres. Ecological Indicators, 2012, 18, 58-62.	2.6	41
88	Musselâ€Inspired Flexible, Durable, and Conductive Fibers Manufacturing for Fingerâ€Monitoring Sensors. Advanced Materials Interfaces, 2019, 6, 1801547.	1.9	41
89	Effects of pore size distribution and fiber diameter on the coupled heat and liquid moisture transfer in porous textiles. International Journal of Heat and Mass Transfer, 2003, 46, 5099-5111.	2.5	40
90	Implantable nerve guidance conduits: Material combinations, multi-functional strategies and advanced engineering innovations. Bioactive Materials, 2022, 11, 57-76.	8.6	39

Ŧ	ARTICLE	IF	CHAIIONS
91	Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy. International Journal of Nanomedicine, 2017, Volume 12, 7751-7761.	3.3	38
92	An explicit series solution of the squeezing flow between two infinite plates by means of the homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 119-132.	1.7	37
93	Improvement of wrinkle-resistant treatment by nanotechnology. Journal of the Textile Institute, 2009, 100, 173-180.	1.0	37
94	Twisted graphene fibre based breathable, wettable and washable anti-jamming strain sensor for underwater motion sensing. Chemical Engineering Journal, 2022, 439, 135502.	6.6	37
95	Generation of Silk Fibroin Nanoparticles via Solution-Enhanced Dispersion by Supercritical CO ₂ . Industrial & Engineering Chemistry Research, 2013, 52, 3752-3761.	1.8	36
96	Design of an Ultrasensitive Flexible Bend Sensor Using a Silver-Doped Oriented Poly(vinylidene) Tj ETQq0 0 0 rgB 1359-1367.	T /Overloc 4.0	k 10 Tf 50 5 36
97	Fabric Bagging. Textile Reseach Journal, 1999, 69, 511-518.	1.1	35
98	Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair. Acta Biomaterialia, 2021, 134, 116-130.	4.1	35
99	Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study. Biomicrofluidics, 2012, 6, 024111.	1.2	34
100	Deformationâ€Resilient Embroidered Near Field Communication Antenna and Energy Harvesters for Wearable Applications. Advanced Intelligent Systems, 2019, 1, 1900056.	3.3	34
101	Preparation and Characterization of Quantum Dots Coated Magnetic Hollow Spheres for Magnetic Fluorescent Multimodal Imaging and Drug Delivery. Journal of Nanoscience and Nanotechnology, 2009, 9, 2540-2545.	0.9	33
102	NUMERICAL SIMULATION OF COUPLED HEAT AND MASS TRANSFER IN HYGROSCOPIC POROUS MATERIALS CONSIDERING THE INFLUENCE OF ATMOSPHERIC PRESSURE. Numerical Heat Transfer, Part B: Fundamentals, 2004, 45, 249-262.	0.6	32
103	Fabrication and degradation of poly(l-lactic acid) scaffolds with wool keratin. Composites Part B: Engineering, 2009, 40, 664-667.	5.9	32
104	Body measurements of Chinese males in dynamic postures and application. Applied Ergonomics, 2011, 42, 900-912.	1.7	32
105	Factors affecting horticultural and cleaning workers' preference onÂcooling vests. Building and Environment, 2013, 66, 181-189.	3.0	32
106	A Biodegradable Stent with Surface Functionalization of Combinedâ€Therapy Drugs for Colorectal Cancer. Advanced Healthcare Materials, 2018, 7, e1801213.	3.9	32
107	Simulating Anisotropic Woven Fabric Deformation with a New Particle Model. Textile Reseach Journal, 2003, 73, 1091-1099.	1.1	31
108	A 3D Biomechanical Model for Numerical Simulation of Dynamic Mechanical Interactions of Bra and Breast during Wear. Journal of Fiber Science and Technology, 2003, 59, 12-21.	0.0	31

#	Article	IF	CITATIONS
109	Solubility enhancement of curcumin via supercritical CO2 based silk fibroin carrier. Journal of Supercritical Fluids, 2015, 103, 1-9.	1.6	30
110	Developing a hybrid cooling vest for combating heat stress in the construction industry. Textile Reseach Journal, 2019, 89, 254-269.	1.1	30
111	Mathematical Simulation of Fabric Bagging. Textile Reseach Journal, 2000, 70, 18-28.	1.1	29
112	Numerical simulation of virus diffusion in facemask during breathing cycles. International Journal of Heat and Mass Transfer, 2005, 48, 4229-4242.	2.5	29
113	Objective Evaluation of Skin Pressure Distribution of Graduated Elastic Compression Stockings. Dermatologic Surgery, 2005, 31, 615-624.	0.4	29
114	Porous nanostructured poly-l-lactide scaffolds prepared by phase inversion using supercritical CO2 as a nonsolvent in the presence of ammonium bicarbonate particles. Journal of Supercritical Fluids, 2013, 77, 110-116.	1.6	29
115	Quantitative assessment of relationship between pressure performances and material mechanical properties of medical graduated compression stockings. Journal of Applied Polymer Science, 2007, 104, 601-610.	1.3	28
116	Development of silk fibroin modified poly(l-lactide)–poly(ethylene glycol)–poly(l-lactide) nanoparticles in supercritical CO2. Powder Technology, 2014, 268, 118-125.	2.1	28
117	Mechanism of Anticancer Effects of Antimicrobial Peptides. Journal of Fiber Bioengineering and Informatics, 2015, 8, 25-36.	0.2	28
118	Skin pressure profiles and variations with body postural changes beneath medical elastic compression stockings. International Journal of Dermatology, 2007, 46, 514-523.	0.5	27
119	A CAD system for multi-style thermal functional design of clothing. CAD Computer Aided Design, 2008, 40, 916-930.	1.4	27
120	Development of core-shell microcapsules by a novel supercritical CO2 process. Journal of Materials Science: Materials in Medicine, 2009, 20, 751-758.	1.7	27
121	A multi-disciplinary strategy for computer-aided clothing thermal engineering design. CAD Computer Aided Design, 2011, 43, 1854-1869.	1.4	27
122	Synthesis and characterization of wool keratin/hydroxyapatite nanocomposite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 896-902.	1.6	27
123	Radiation and conduction heat transfer coupled with liquid water transfer, moisture sorption, and condensation in porous polymer materials. Journal of Applied Polymer Science, 2003, 89, 2780-2790.	1.3	26
124	High-throughput single-cell analysis of exosome mediated dual drug delivery, <i>in vivo</i> fate and synergistic tumor therapy. Nanoscale, 2020, 12, 13742-13756.	2.8	26
125	Recent Progress in Tissue Engineering and Regenerative Medicine. Journal of Biomaterials and Tissue Engineering, 2016, 6, 755-766.	0.0	26
126	Viscoelastic Behavior of Fibers During Woven Fabric Bagging. Textile Reseach Journal, 2000, 70, 751-757.	1.1	25

#	Article	IF	CITATIONS
127	Effects of material properties and fabric structure characteristics of graduated compression stockings (GCS) on the skin pressure distributions. Fibers and Polymers, 2005, 6, 322-331.	1.1	25
128	Transmission of communicable respiratory infections and facemasks. Journal of Multidisciplinary Healthcare, 2008, 1, 17.	1.1	25
129	Sequential delivery of dual drugs with nanostructured lipid carriers for improving synergistic tumor treatment effect. Drug Delivery, 2020, 27, 983-995.	2.5	25
130	Fabric Bagging. Textile Reseach Journal, 1999, 69, 598-606.	1.1	24
131	Crosslinking Analysis of Polycarboxylic Acid Durable Press Finishing of Cotton Fabrics and Strength Retention Improvement. Textile Reseach Journal, 2000, 70, 588-592.	1.1	24
132	Fabric-bagging: Stress Distribution in Isotropic and Anisotropic Fabrics. Journal of the Textile Institute, 2000, 91, 563-576.	1.0	24
133	Relationship between thermophysiological responses and psychological thermal perception during exercise wearing aerobic wear. Journal of Thermal Biology, 2004, 29, 791-796.	1.1	24
134	Effective personal protective clothing for health care workers attending patients with severe acute respiratory syndrome. American Journal of Infection Control, 2004, 32, 90-96.	1.1	24
135	A continuous RESS process to prepare PLA–PEG–PLA microparticles. Journal of Supercritical Fluids, 2011, 59, 92-97.	1.6	24
136	Smart moisture management and thermoregulation properties of stimuli-responsive cotton modified with polymer brushes. RSC Advances, 2014, 4, 63691-63695.	1.7	23
137	The physical mechanisms of the perception of dampness in fabrics. Journal of Thermal Biology, 1993, 18, 417-419.	1.1	22
138	Enhancement of Coolness to the Touch by Hygroscopic Fibers. Textile Reseach Journal, 1996, 66, 587-594.	1.1	22
139	Comparison of hand contamination rates and environmental contamination levels between two different glove removal methods and distances. American Journal of Infection Control, 2011, 39, 104-111.	1.1	22
140	Composite Membranes of Recombinant Silkworm Antimicrobial Peptide and Poly (L-lactic Acid) (PLLA) for biomedical application. Scientific Reports, 2016, 6, 31149.	1.6	22
141	Flexible strain sensing percolation networks towards complicated wearable microclimate and multi-direction mechanical inputs. Nano Energy, 2022, 99, 107444.	8.2	22
142	Predictability Between Objective Physical Factors of Fabrics and Subjective Preference Votes for Derived Garments. Journal of the Textile Institute, 1991, 82, 277-284.	1.0	21
143	Evaluating and Predicting Fabric Bagging with Image Processing. Textile Reseach Journal, 2002, 72, 693-700.	1.1	21
144	Numerical Heat Transfer Coupled with Multidimensional Liquid Moisture Diffusion in Porous Textiles with a Measurable-Parameterized Model. Numerical Heat Transfer; Part A: Applications, 2009, 56, 246-268.	1.2	21

#	Article	IF	CITATIONS
145	Durable, Washable, and Flexible Conductive PET Fabrics Designed by Fiber Interfacial Molecular Engineering. Macromolecular Materials and Engineering, 2016, 301, 1383-1389.	1.7	21
146	Durable and Washable Antibacterial Copper Nanoparticles Bridged by Surface Grafting Polymer Brushes on Cotton and Polymeric Materials. Journal of Nanomaterials, 2018, 2018, 1-7.	1.5	21
147	Polymer Interface Molecular Engineering for E-Textiles. Polymers, 2018, 10, 573.	2.0	21
148	Numerical simulation of the transient heat and liquid moisture transfer through porous textiles with consideration of electric double layer. International Journal of Heat and Mass Transfer, 2010, 53, 1417-1425.	2.5	20
149	Antibacterial Properties of Nanosilver PLLA Fibrous Membranes. Journal of Nanomaterials, 2009, 2009, 1-5.	1.5	19
150	A Critical Review on Life Cycle Assessment Studies of Diapers. Critical Reviews in Environmental Science and Technology, 2013, 43, 1795-1822.	6.6	19
151	Development of silk fibroin-derived nanofibrous drug delivery system in supercritical CO2. Materials Letters, 2016, 167, 175-178.	1.3	19
152	High strength and strain alginate fibers by a novel wheel spinning technique for knitting stretchable and biocompatible wound-care materials. Materials Science and Engineering C, 2021, 127, 112204.	3.8	19
153	Comfort evaluation of maternity support garments in a wear trial. Ergonomics, 2008, 51, 1376-1393.	1.1	18
154	Physiological responses and psychological sensations in wearer trials with knitted sportswear. Ergonomics, 1988, 31, 1709-1721.	1.1	17
155	Mathematical Modelling of the Coolness to Touch of Hygroscopic Fabrics. Journal of the Textile Institute, 1993, 84, 267-274.	1.0	17
156	The Application of the Volumetric Subdivision Scheme in the Simulation of Elastic Human Body Deformation and Garment Pressure. Textile Reseach Journal, 2005, 75, 591-597.	1.1	17
157	Garment needs of pregnant women based on content analysis of inâ€depth interviews. Journal of Clinical Nursing, 2009, 18, 2426-2435.	1.4	17
158	Textile Based Embroidery-Friendly RFID Antenna Design Techniques. , 2019, , .		17
159	Characterization and Modeling of Embroidered NFC Coil Antennas for Wearable Applications. IEEE Sensors Journal, 2020, 20, 14501-14513.	2.4	17
160	Enhancement of β-Phase Crystal Content of Poly(vinylidene fluoride) Nanofiber Web by Graphene and Electrospinning Parameters. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1239-1247.	2.0	17
161	Characterization of nanoscale wool particles. Journal of Applied Polymer Science, 2007, 104, 803-808.	1.3	16
162	Investigation on heat and mass transfer in 3D woven fibrous material. International Journal of Heat and Mass Transfer, 2011, 54, 3575-3586.	2.5	16

#	Article	IF	CITATIONS
163	Effects of fabrics with dynamic moisture transfer properties on skin temperature in females during exercise and recovery. Textile Reseach Journal, 2015, 85, 2030-2039.	1.1	16
164	Effects of body-mapping-designed clothing on heat stress and running performance in a hot environment. Ergonomics, 2017, 60, 1435-1444.	1.1	16
165	Controllable release of vascular endothelial growth factor (VEGF) by wheel spinning alginate/silk fibroin fibers for wound healing. Materials and Design, 2021, 212, 110231.	3.3	16
166	Relative Contributions of Elasticity and Viscoelasticity of Fibres and Inter-fibre Friction in Bagging of Woven Wool Fabrics. Journal of the Textile Institute, 2000, 91, 577-589.	1.0	15
167	Numerical simulation of internal stress profiles and three-dimensional deformations of lower extremity beneath medical graduated compression stocking (GCS). Fibers and Polymers, 2007, 8, 302-308.	1.1	15
168	Fabrication of Fastâ€Absorbing and Quickâ€Drying Wool Fabrics with Good Washing Durability. ChemSusChem, 2010, 3, 1031-1035.	3.6	15
169	Psychophysical Relations between Interacted Fabric Thermalâ€Tactile Properties and Psychological Touch Perceptions. Journal of Sensory Studies, 2016, 31, 181-192.	0.8	15
170	New Approaches to Evaluate the Performance of Firefighter Protective Clothing Materials. Fire Technology, 2018, 54, 1283-1307.	1.5	15
171	A heparin-functionalized woven stent graft for endovascular exclusion. Colloids and Surfaces B: Biointerfaces, 2019, 180, 118-126.	2.5	15
172	Performance evaluation of conductive tracks in fabricating e-textiles by lock-stitch embroidery. Journal of Industrial Textiles, 2020, , 152808372093728.	1.1	15
173	Sustainable Antibacterial Surgical Suture Using a Facile Scalable Silk-Fibroin-Based Berberine Loading System. ACS Biomaterials Science and Engineering, 2021, 7, 2845-2857.	2.6	15
174	Eco-Impact of Plastic and Paper Shopping Bags. Journal of Engineered Fibers and Fabrics, 2012, 7, 155892501200700.	0.5	14
175	Polydioxanone weft-knitted intestinal stents: fabrication and mechanics optimization. Textile Reseach Journal, 2013, 83, 2129-2141.	1.1	14
176	A prospective bifurcated biomedical stent with seamless woven structure. Journal of the Textile Institute, 2013, 104, 1017-1023.	1.0	14
177	Customized Body Mapping to Facilitate the Ergonomic Design of Sportswear. IEEE Computer Graphics and Applications, 2016, 36, 70-77.	1.0	14
178	Effect of the environmental atmosphere on heat, water and gas transfer within hygroscopic fabrics. Journal of Computational and Applied Mathematics, 2004, 163, 199-210.	1.1	13
179	A computational analysis for effects of fibre hygroscopicity on heat and moisture transfer in textiles with PCM microcapsules. Modelling and Simulation in Materials Science and Engineering, 2007, 15, 223-235.	0.8	13
180	Preparation and characterisation of nano-scale cotton powder. Journal of the Textile Institute, 2009, 100, 165-172.	1.0	13

#	Article	IF	CITATIONS
181	Investigation of the 3D model of coupled heat and liquid moisture transfer in hygroscopic porous fibrous media. International Journal of Heat and Mass Transfer, 2010, 53, 3914-3927.	2.5	13
182	5-Fluorouracil-loaded poly-l-lactide fibrous membrane for the prevention of intestinal stent restenosis. Journal of Materials Science, 2013, 48, 6186-6193.	1.7	13
183	Heat and mass transfer of adult incontinence briefs in computational simulations and objective measurements. International Journal of Heat and Mass Transfer, 2013, 64, 133-144.	2.5	13
184	Creative Educational Use of Virtual Reality: Working with Second Life. IEEE Computer Graphics and Applications, 2014, 34, 83-87.	1.0	13
185	On textile biomedical engineering. Science China Technological Sciences, 2019, 62, 945-957.	2.0	13
186	Mathematical modeling of thermal physiological responses of clothed infants. Journal of Thermal Biology, 2004, 29, 559-565.	1.1	12
187	Effect of wearing cotton or polyester pajamas on stratum corneum water content under mildly cold conditions. Journal of the American Academy of Dermatology, 2006, 55, 910-912.	0.6	12
188	Transport properties of fabrics treated with nano-wool fibrous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 136-139.	2.3	12
189	Functionalization of Magnetic Nanoparticles with Organic Ligands toward Biomedical Applications. Advanced NanoBiomed Research, 2021, 1, 2000043.	1.7	12
190	A Review on Fabric Smoothness-roughness Sensation Studies. Journal of Fiber Bioengineering and Informatics, 2011, 4, 105-114.	0.2	12
191	Perceptual Requirements of Hong Kong Consumers on Children's Denim Wear. Journal of the Textile Institute, 1998, 89, 96-110.	1.0	11
192	Characterization of thermal radiation properties of polymeric materials. Polymer Testing, 2006, 25, 405-412.	2.3	11
193	Indicating the development stage of nanotechnology in the textile and clothing industry. International Journal of Nanotechnology, 2007, 4, 667.	0.1	11
194	Capillary rise between cylinders. Journal Physics D: Applied Physics, 2007, 40, 5006-5012.	1.3	11
195	Assessment of ecoâ€functional properties of shopping bags. International Journal of Clothing Science and Technology, 2013, 25, 208-225.	0.5	11
196	Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide. Biomedical Materials (Bristol), 2015, 10, 035015.	1.7	11
197	Numerical Simulation of Skin Pressure Distribution Applied by Graduated Compression Stockings. Studies in Computational Intelligence, 2007, , 301-309.	0.7	11
198	Bagging of Woven Fabrics: The Rheological Mechanism and Predictions. Journal of the Textile Institute, 2001, 92, 235-255.	1.0	10

#	Article	IF	CITATIONS
199	Engineering design of thermal quality clothing on a simulation-based and lifestyle-oriented CAD system. Engineering With Computers, 2011, 27, 405-421.	3.5	10
200	Modelling and quantification of Eco-functional Index: The concept and applications of eco-functional assessment. Ecological Indicators, 2013, 26, 33-43.	2.6	10
201	Effects of contact method and acclimation on temperature and humidity in touch perception. Textile Reseach Journal, 2018, 88, 1605-1615.	1.1	10
202	Molecular tailoring to improve polypyrrole hydrogels' stiffness and electrochemical energy storage capacity. Frontiers of Chemical Science and Engineering, 2019, 13, 684-694.	2.3	10
203	A Transient 3-D Thermal Model for Clothed Human Body Considering More Real Geometry. Journal of Computers, 2013, 8, .	0.4	10
204	Mathematical simulation of dynamic coupled heat and liquid moisture transfer in multilayer anisotropic porous polymers. Journal of Applied Polymer Science, 2004, 94, 1590-1605.	1.3	9
205	An optimized design of compression sportswear fabric using numerical simulation and the response surface method. Textile Reseach Journal, 2012, 82, 108-116.	1.1	9
206	Ionic liquids as two-dimensional templates for the spontaneous assembly of copper nanoparticles into nanobelts and observation of an intermediate state. RSC Advances, 2013, 3, 341-344.	1.7	9
207	Nano Polypeptide Particles Reinforced Polymer Composite Fibers. ACS Applied Materials & Interfaces, 2015, 7, 3871-3876.	4.0	9
208	Development and antiultraviolet properties of epoxidized styrene–butadiene–styrene nanofibers loaded with nanometer titania dioxide. Journal of Industrial Textiles, 2017, 46, 1715-1724.	1.1	9
209	A facile scalable conductive graphene-coated Calotropis gigantea yarn. Cellulose, 2022, 29, 3545-3556.	2.4	9
210	Recurrence surfaces on arbitrary quadrilateral mesh. Journal of Computational and Applied Mathematics, 2002, 144, 221-232.	1.1	8
211	Fabrication of cotton nano-powder and its textile application. Science Bulletin, 2008, 53, 3735-3740.	1.7	8
212	Photogrammetric prediction of girdle pressure. Measurement Science and Technology, 2009, 20, 015804.	1.4	8
213	Effects of compression legwear on body temperature, heart rate, and blood pressure following prolonged standing and sitting in women. Fibers and Polymers, 2010, 11, 128-135.	1.1	8
214	A finite-element mechanical contact model based on Mindlin–Reissner shell theory for a three-dimensional human body and garment. Journal of Computational and Applied Mathematics, 2011, 236, 867-877.	1.1	8
215	Carbon and eco-footprints of adult incontinence products. Fibers and Polymers, 2013, 14, 1776-1781.	1.1	8
216	Knitted fabrics design and manufacture: A novel CAD system for qualifying bagging performance based on geometric-mechanical models. CAD Computer Aided Design, 2016, 75-76, 61-75.	1.4	8

#	Article	IF	CITATIONS
217	Numerical simulation of thermal behaviors of a clothed human body with evaluation of indoor solar radiation. Applied Thermal Engineering, 2017, 117, 629-643.	3.0	8
218	Design and Fabrication of Embroidered RFID Antennas for Wearable Applications. , 2018, , .		8
219	Influence of Waterproof Fabrics on Coupled Heat and Moisture Transfer in a Clothing System. Journal of Fiber Science and Technology, 2003, 59, 187-197.	0.0	8
220	Effect of weave structure and yarn fineness on the coolness and thermal-wet comfort properties of woven fabric. Textile Reseach Journal, 2022, 92, 3782-3796.	1.1	8
221	Performances of Artificial Intelligence Hybrid Models' in Prediction of Clothing Comfort From Fabric Physical Properties. Journal of Fiber Science and Technology, 2003, 59, 429-436.	0.0	7
222	An upwind compact mpact approach with group velocity control for compressible flow fields. International Journal for Numerical Methods in Fluids, 2004, 44, 463-482.	0.9	7
223	Effects of fabric surface energy on human thermophysiological responses during exercise and recovery. Fibers and Polymers, 2007, 8, 319-325.	1.1	7
224	The effects of pajama fabrics' water absorption properties on the stratum corneum under mildly cold conditions. Journal of the American Academy of Dermatology, 2011, 64, e29-e36.	0.6	7
225	The heat and moisture transfer balance theory of garment simulation. Journal of Computational and Applied Mathematics, 2011, 236, 980-987.	1.1	7
226	Toxicity study of isolated polypeptide from wool hydrolysate. Food and Chemical Toxicology, 2013, 57, 338-345.	1.8	7
227	Preparation and Characterization of Paclitaxel Loaded SF/PLLA-PEG-PLLA Nanoparticles via Solution-Enhanced Dispersion by Supercritical CO2. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	7
228	Numerical simulation of multiscale heat and moisture transfer in the thermal smart clothing system. Applied Mathematical Modelling, 2016, 40, 3342-3364.	2.2	7
229	A potential brain zone perceiving a comfortable fabric pressure touch. Textile Reseach Journal, 2019, 89, 3499-3505.	1.1	7
230	Fusion of Art and Technology in Professional Cycling Sportswear Design. Leonardo, 2014, 47, 176-178.	0.2	6
231	Educational Virtual-Wear Trial: More Than a Virtual Try-On Experience. IEEE Computer Graphics and Applications, 2015, 35, 83-89.	1.0	6
232	An All-Fabric Tactile-Sensing Keypad with Uni-Modal and Ultrafast Response/Recovery Time for Smart Clothing Applications. ACS Applied Materials & Interfaces, 2022, 14, 24946-24954.	4.0	6
233	Simulation of clothing thermal comfort with fuzzy logic. Elsevier Ergonomics Book Series, 2005, 3, 467-471.	0.1	5
234	The influence of thermal comfort perception on consumer's preferences to sportswear. Elsevier Ergonomics Book Series, 2005, 3, 321-328.	0.1	5

#	Article	IF	CITATIONS
235	Osteoblast Growth on Poly(L-lactic acid)-Negative Ion Powder Composite Films. Journal of Bioactive and Compatible Polymers, 2006, 21, 445-463.	0.8	5
236	Psychology and sensory comfort. , 2006, , 9-27.		5
237	Generation of biofunctional and biodegradable electrospun nanofibers composed of poly (<scp>l</scp> -lactic acid) and wool isoelectric precipitate. Textile Reseach Journal, 2014, 84, 355-367.	1.1	5
238	Computational Investigation of Thermoregulatory Effects of Multi-Layer PCM Textile Assembly. Studies in Computational Intelligence, 2007, , 235-245.	0.7	5
239	Application of clothing biosensory engineering. , 2006, , .		5
240	Rational recurrence curves and recurrence surfaces in multivariate B-form on some regions. Journal of Computational and Applied Mathematics, 2004, 163, 277-285.	1.1	4
241	Analysis of the structural characteristics of nanoscale silk particles. Journal of Applied Polymer Science, 2006, 100, 268-274.	1.3	4
242	Neuromechanical representation of fabric-evoked prickle: Spatial and probability integration. Fibers and Polymers, 2010, 11, 790-797.	1.1	4
243	Neuromechanical representation of fabric-evoked prickliness: a fiber-skin-neuron model. Cognitive Neurodynamics, 2011, 5, 161-170.	2.3	4
244	The mechanics of buckling fiber in relation to fabricâ€evoked prickliness: a theory model of single fiber prickling human skin. Journal of the Textile Institute, 2011, 102, 1003-1018.	1.0	4
245	Toward Visual Avatars that Dress You Well and Impact Your Health. IEEE Computer Graphics and Applications, 2018, 38, 22-27.	1.0	4
246	A potential new fabric evaluation approach by capturing brain perception under fabric contact pressure. Textile Reseach Journal, 2019, 89, 3312-3325.	1.1	4
247	Computer Simulation of Multi-phase Coupled Heat and Moisture Transfer in Clothing Assembly with a Phase Change Material in a Cold Environment. Lecture Notes in Computer Science, 2006, , 1103-1106.	1.0	4
248	Computational Textile Bioengineering. Studies in Computational Intelligence, 2007, , 203-221.	0.7	4
249	M-Smart - An Improved Multi-style Engineering Design CAD System for Clothing Thermal Functions. Journal of Fiber Bioengineering and Informatics, 2011, 4, 71-82.	0.2	4
250	A Finite Element Study of Stress Distribution in Textiles with Bagging. , 0, , .		4
251	Intestinal stents: Structure, functionalization and advanced engineering innovation. , 2022, 137, 212810.		4
252	Representation and conversion of Bezier surfaces in multivariate B-form. Journal of Computational and Applied Mathematics, 2006, 195, 206-211.	1.1	3

#	Article	IF	CITATIONS
253	Anthropometric measurement of premature infants. International Journal of Clothing Science and Technology, 2007, 19, 319-333.	0.5	3
254	Mechanism of pajama material on stratum corneum water content under mild cold conditions: explored by hierarchical linear regression. Skin Research and Technology, 2007, 13, 412-416.	0.8	3
255	Fabrication of Poly(L-Latic Acid) Scaffolds with Wool Keratin for Osteoblast Cultivation. Advanced Materials Research, 0, 47-50, 845-848.	0.3	3
256	Investigation of pajama properties on skin under mild cold conditions: the interaction between skin and clothing. International Journal of Dermatology, 2011, 50, 819-826.	0.5	3
257	Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes. Journal of Thermal Biology, 2016, 58, 1-7.	1.1	3
258	Study of heat-setting treatment for biomedical polydioxanone stents. Journal of Industrial Textiles, 2016, 46, 75-87.	1.1	3
259	Life Cycle Assessment of Grocery Shopping Bags. Ecoproduction, 2014, , 15-54.	0.8	3
260	Recent Progress of Supercritical Carbon Dioxide in Producing Natural Nanomaterials. Mini-Reviews in Medicinal Chemistry, 2019, 19, 465-476.	1.1	3
261	Clothing Expenditure and the Income Elasticity of Chinese Consumers. Journal of the Textile Institute, 1999, 90, 121-135.	1.0	2
262	Prediction of clothing sensory comfort. , 2006, , 178-188.		2
263	Antibacterial and Nontoxic Nano Silver PLLA Composites for Tissue Engineering. Advanced Materials Research, 2008, 47-50, 849-852.	0.3	2
264	Effects of deep knee flexion on skin pressure profile with lower limb device: A computational study. Textile Reseach Journal, 2020, 90, 1962-1973.	1.1	2
265	Development & Characterization of Alginate/Graphene Oxide Fibers with Improved Electrical Conductivity. Journal of Fiber Bioengineering and Informatics, 2018, 11, 99-111.	0.2	2
266	Thermal sensory engineering design of textile and apparel products. Elsevier Ergonomics Book Series, 2005, 3, 473-476.	0.1	1
267	Thermal and moisture sensations. , 2006, , 93-115.		1
268	Coupled heat and moisture transfer. , 2006, , 235-251.		1
269	Regulatory T cells in Tumor Immunity: Role of Toll-Like Receptors. , 2007, , 277-287.		1
270	Cytotoxicity and Cell Adhesion of PLLA/keratin Composite Fibrous Membranes. IFMBE Proceedings, 2009, , 1492-1495.	0.2	1

#	Article	IF	CITATIONS
271	Mathematical Modeling Heat and Moisture Transfer in Multi-Layer Phase Change Materials Textile Assemblies. , 2009, , .		1
272	Protective Thermo-physiological Clothing Integrated with Intelligent Control and Wireless Measurement. , 2010, , .		1
273	The skim of balance theory of 3D garment simulation. Applied Mathematics and Computation, 2011, 218, 492-501.	1.4	1
274	Orthogonal Numerical Analysis on Thermal Stress of the Pilot Wearing Anti-G Suit with Phase Change Materials. Advanced Materials Research, 2013, 796, 601-606.	0.3	1
275	Application of Visualization in Clothing Thermal Computational Design. Lecture Notes in Computer Science, 2018, , 3-13.	1.0	1
276	Investigation of Neuropsychological Mechanism of Fabric Smoothness Sensation. Fibers and Polymers, 2019, 20, 1069-1076.	1.1	1
277	Antimicrobial peptides in silkworm. Animal Biology, 2019, 69, 391-410.	0.6	1
278	Computational Modeling the Foot-Insole Interface. Studies in Computational Intelligence, 2007, , 311-321.	0.7	1
279	Usability Study of CAD for Clothing Thermal Computational Design Education. Lecture Notes in Computer Science, 2018, , 232-243.	1.0	1
280	Computational Simulation of Multi-Phase Coupled Heat and Moisture Transfer in Phase Change and Self-Heating Porous Materials. Studies in Computational Intelligence, 2007, , 247-254.	0.7	1
281	Eco-Functional Assessment of Grocery Shopping Bags. Ecoproduction, 2014, , 99-113.	0.8	1
282	Technology Districts: A Growth Path for the Australian Wool Industry. Journal of the Textile Institute, 1997, 88, 126-136.	1.0	0
283	Neurophysiology of sensory perceptions. , 2006, , 28-59.		0
284	Sensory comfort of aerobic wear. , 2006, , 366-379.		0
285	Physics of thermal comfort. , 2006, , 74-92.		0
286	Water vapor transfer. , 2006, , 206-217.		0
287	The Numerical Simulation Computational Model of Dynamic Heat and Moisture Transfer in Fibrous Insulation. AIP Conference Proceedings, 2007, , .	0.3	0
288	Reply to the comments on "in vivo protective performance of N95 respirator and surgical facemask― American Journal of Industrial Medicine, 2007, 50, 1027-1029.	1.0	0

#	Article	IF	CITATIONS
289	Numerical Simulation of Heat and Moisture Transfer in System of Human-Clothing with Phase Change Materials-Environment. Applied Mechanics and Materials, 0, 88-89, 470-474.	0.2	0
290	Measurement system and precision analysis for thermal regulating properties evaluation of textile materials. , 2013, , .		0
291	Consumption Behaviour of Shopping Bags and Eco-Impact. Ecoproduction, 2014, , 77-88.	0.8	0
292	FeaFur: A Computer Software Package for Simulating Human Thermophysiological Responses in Dynamic Thermal Environment. Studies in Computational Intelligence, 2007, , 223-233.	0.7	0
293	Numerical Simulation of Heat and Moisture Transfer in Porous Walls with Microencapsulated PCM. Studies in Computational Intelligence, 2007, , 255-263.	0.7	0
294	A CAD System for the Biomechanical Sensory Engineering of Clothing. Studies in Computational Intelligence, 2007, , 277-287.	0.7	0
295	Analysis of lower limb measurements in running progress for high-performance slacks design. Advances in Human Factors and Ergonomics Series, 2010, , 210-221.	0.2	0
296	INTEGRATING WIRELESS MEASUREMENT AND AI CONTROL IN THERMO-PHYSIOLOGICAL CLOTHING. Mechanika, 2011, 17, .	0.3	0
297	Manufacturing Processes of Grocery Shopping Bags. Ecoproduction, 2014, , 7-14.	0.8	0
298	The Efficient Optimization of a Protein Expression by Design of Experiment. Journal of Fiber Bioengineering and Informatics, 2015, 8, 207-220.	0.2	0
299	CPI Learning in Clothing Thermal Computational Design. Lecture Notes in Computer Science, 2017, , 19-28	1.0	0