Nicholas Kwiatkowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3397481/publications.pdf

Version: 2024-02-01

23 papers 3,071 citations

361388 20 h-index 642715 23 g-index

23 all docs

23 docs citations

times ranked

23

4925 citing authors

#	Article	IF	CITATIONS
1	Targeting transcription cycles in cancer. Nature Reviews Cancer, 2022, 22, 5-24.	28.4	59
2	Discovery and resistance mechanism of a selective CDK12 degrader. Nature Chemical Biology, 2021, 17, 675-683.	8.0	69
3	Synergistic Anti-Tumor Effect of Combining Selective CDK7 and BRD4 Inhibition in Neuroblastoma. Frontiers in Oncology, 2021, 11, 773186.	2.8	11
4	CDK7 Inhibition Potentiates Genome Instability Triggering Anti-tumor Immunity in Small Cell Lung Cancer. Cancer Cell, 2020, 37, 37-54.e9.	16.8	138
5	CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Science Advances, 2020, 6, .	10.3	79
6	CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nature Communications, 2019, 10, 1757.	12.8	159
7	Development of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype. Cell Chemical Biology, 2019, 26, 792-803.e10.	5.2	103
8	Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Research, 2019, 164, 147-153.	4.1	14
9	Homolog-Selective Degradation as a Strategy to Probe the Function of CDK6 in AML. Cell Chemical Biology, 2019, 26, 300-306.e9.	5.2	188
10	Small Molecules Targeting the Flavivirus E Protein with Broad-Spectrum Activity and Antiviral Efficacy <i>in Vivo</i> . ACS Infectious Diseases, 2019, 5, 460-472.	3.8	29
11	Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations. Cancer Cell, 2018, 33, 173-186.e5.	16.8	201
12	EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma. Cancer Cell, 2018, 33, 202-216.e6.	16.8	116
13	Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nature Chemical Biology, 2018, 14, 163-170.	8.0	376
14	Overcoming Resistance to the THZ Series of Covalent Transcriptional CDK Inhibitors. Cell Chemical Biology, 2018, 25, 135-142.e5.	5. 2	58
15	High MITF Expression Is Associated with Super-Enhancers and Suppressed by CDK7 Inhibition in Melanoma. Journal of Investigative Dermatology, 2018, 138, 1582-1590.	0.7	46
16	Development of Highly Potent and Selective Steroidal Inhibitors and Degraders of CDK8. ACS Medicinal Chemistry Letters, 2018, 9, 540-545.	2.8	67
17	THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nature Communications, 2017, 8, 14290.	12.8	74
18	Activation of the p53 Transcriptional Program Sensitizes Cancer Cells to Cdk7 Inhibitors. Cell Reports, 2017, 21, 467-481.	6.4	65

#	Article	IF	CITATIONS
19	Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nature Chemical Biology, 2016, 12, 876-884.	8.0	249
20	Tivantinib (ARQ 197) efficacy is independent of MET inhibition in nonâ€small ell lung cancer cell lines. Molecular Oncology, 2015, 9, 260-269.	4.6	51
21	Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature, 2014, 511, 616-620.	27.8	698
22	Selective Aurora Kinase Inhibitors Identified Using a Taxol-Induced Checkpoint Sensitivity Screen. ACS Chemical Biology, 2012, 7, 185-196.	3.4	20
23	Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nature Chemical Biology, 2010, 6, 359-368.	8.0	201