Gijs H Goossens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3397428/publications.pdf Version: 2024-02-01

		61984	29157
109	12,779	43	104
papers	citations	h-index	g-index
111	111	111	24039
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function. Obesity Facts, 2017, 10, 207-215.	3.4	5,743
2	Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans. Cell Metabolism, 2011, 14, 612-622.	16.2	1,072
3	The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiology and Behavior, 2008, 94, 206-218.	2.1	443
4	Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial. Cell Metabolism, 2016, 24, 63-74.	16.2	278
5	One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation. Diabetes, 2016, 65, 2862-2875.	0.6	267
6	Increased Adipose Tissue Oxygen Tension in Obese Compared With Lean Men Is Accompanied by Insulin Resistance, Impaired Adipose Tissue Capillarization, and Inflammation. Circulation, 2011, 124, 67-76.	1.6	257
7	Obesity and the lung: 5 {middle dot} Obesity and COPD. Thorax, 2008, 63, 1110-1117.	5.6	245
8	Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Scientific Reports, 2017, 7, 2360.	3.3	216
9	Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Scientific Reports, 2019, 9, 12515.	3.3	200
10	N ^ε -(Carboxymethyl)lysine-Receptor for Advanced Glycation End Product Axis Is a Key Modulator of Obesity-Induced Dysregulation of Adipokine Expression and Insulin Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1199-1208.	2.4	165
11	Possible involvement of the adipose tissue reninâ€angiotensin system in the pathophysiology of obesity and obesityâ€related disorders. Obesity Reviews, 2003, 4, 43-55.	6.5	163
12	Ectopic Fat Storage in the Pancreas, Liver, and Abdominal Fat Depots: Impact on β-Cell Function in Individuals with Impaired Glucose Metabolism. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 459-467.	3.6	160
13	Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nature Reviews Endocrinology, 2021, 17, 47-66.	9.6	155
14	Supplementation of Diet With Galacto-oligosaccharides Increases Bifidobacteria, but Not Insulin Sensitivity, inÂObeseÂPrediabetic Individuals. Gastroenterology, 2017, 153, 87-97.e3.	1.3	150
15	The ABCD of Obesity: An EASO Position Statement on a Diagnostic Term with Clinical and Scientific Implications. Obesity Facts, 2019, 12, 131-136.	3.4	143
16	The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men. International Journal of Obesity, 2014, 38, 470-473.	3.4	115
17	Targeting fatty acid metabolism to improve glucose metabolism. Obesity Reviews, 2015, 16, 715-757.	6.5	113
18	Adipose Tissue Dysfunction and Impaired Metabolic Health in Human Obesity: A Matter of Oxygen?. Frontiers in Endocrinology, 2015, 6, 55.	3.5	103

#	Article	IF	CITATIONS
19	Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women. European Journal of Clinical Nutrition, 2017, 71, 1040-1045.	2.9	103
20	Expression of NLRP3 inflammasome and T cell population markers in adipose tissue are associated with insulin resistance and impaired glucose metabolism in humans. Molecular Immunology, 2012, 50, 142-149.	2.2	98
21	Improved Insulin Sensitivity With Angiotensin Receptor Neprilysin Inhibition in Individuals With Obesity and Hypertension. Clinical Pharmacology and Therapeutics, 2017, 101, 254-263.	4.7	89
22	Upper and Lower Body Adipose Tissue Function: A Direct Comparison of Fat Mobilization in Humans. Obesity, 2004, 12, 114-118.	4.0	85
23	Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial. American Journal of Clinical Nutrition, 2016, 104, 215-227.	4.7	85
24	Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism. Diabetes Care, 2011, 34, 845-851.	8.6	79
25	The Renin-Angiotensin System in the Pathophysiology of Type 2 Diabetes. Obesity Facts, 2012, 5, 611-624.	3.4	73
26	Oxygenation of adipose tissue: A human perspective. Acta Physiologica, 2020, 228, e13298.	3.8	72
27	Effect of beta-adrenergic stimulation on whole-body and abdominal subcutaneous adipose tissue lipolysis in lean and obese men. Diabetologia, 2008, 51, 320-327.	6.3	71
28	Ectopic Fat Accumulation in Distinct Insulin Resistant Phenotypes; Targets for Personalized Nutritional Interventions. Frontiers in Nutrition, 2018, 5, 77.	3.7	71
29	Angiotensin II-Induced Effects on Adipose and Skeletal Muscle Tissue Blood Flow and Lipolysis in Normal-Weight and Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2690-2696.	3.6	67
30	European Association for the Study of Obesity Position Statement on the Global COVID-19 Pandemic. Obesity Facts, 2020, 13, 292-296.	3.4	63
31	The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Frontiers in Nutrition, 2020, 7, 598340.	3.7	62
32	Adipose triglyceride lipase (ATGL) expression in human skeletal muscle is type I (oxidative) fiber specific. Histochemistry and Cell Biology, 2008, 129, 535-538.	1.7	58
33	Adipose tissue oxygen tension. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 539-546.	2.5	57
34	Endocrine Role of the Renin-Angiotensin System in Human Adipose Tissue and Muscle. Hypertension, 2007, 49, 542-547.	2.7	56
35	Insulin-mediated suppression of lipolysis in adipose tissue and skeletal muscle of obese type 2 diabetic men and men with normal glucose tolerance. Diabetologia, 2013, 56, 2255-2265.	6.3	54
36	Short-term supplementation with a specific combination of dietary polyphenols increases energy expenditure and alters substrate metabolism in overweight subjects. International Journal of Obesity, 2014, 38, 698-706.	3.4	54

#	Article	IF	CITATIONS
37	The Impact of Dairy Products in the Development of Type 2 Diabetes: Where Does the Evidence Stand in 2019?. Advances in Nutrition, 2019, 10, 1066-1075.	6.4	53
38	Exercise training-induced effects on the abdominal subcutaneous adipose tissue phenotype in humans with obesity. Journal of Applied Physiology, 2018, 125, 1585-1593.	2.5	52
39	Obesity and COVID-19: The Two Sides of the Coin. Obesity Facts, 2020, 13, 430-438.	3.4	51
40	Plasma pigment epithelium-derived factor is positively associated with obesity in Caucasian subjects, in particular with the visceral fat depot. European Journal of Endocrinology, 2008, 159, 713-718.	3.7	50
41	Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut, 2022, 71, 1214-1226.	12.1	50
42	Obesity and COVID-19: A Perspective from the European Association for the Study of Obesity on Immunological Perturbations, Therapeutic Challenges, and Opportunities in Obesity. Obesity Facts, 2020, 13, 439-452.	3.4	49
43	Angiotensin II: a hormone that affects lipid metabolism in adipose tissue. International Journal of Obesity, 2007, 31, 382-384.	3.4	45
44	Characterization of the inflammatory and metabolic profile of adipose tissue in a mouse model of chronic hypoxia. Journal of Applied Physiology, 2013, 114, 1619-1628.	2.5	45
45	Valsartan Improves Adipose Tissue Function in Humans with Impaired Glucose Metabolism: A Randomized Placebo-Controlled Double-Blind Trial. PLoS ONE, 2012, 7, e39930.	2.5	44
46	PUFAs acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increase postprandial insulin sensitivity. American Journal of Clinical Nutrition, 2012, 95, 825-836.	4.7	42
47	Hormone-Sensitive Lipase Serine Phosphorylation and Glycerol Exchange Across Skeletal Muscle in Lean and Obese Subjects. Diabetes, 2008, 57, 1834-1841.	0.6	38
48	Angiotensin II: a major regulator of subcutaneous adipose tissue blood flow in humans. Journal of Physiology, 2006, 571, 451-460.	2.9	37
49	Metabolic profiling of tissue-specific insulin resistance in human obesity: results from the Diogenes study and the Maastricht Study. International Journal of Obesity, 2020, 44, 1376-1386.	3.4	36
50	Several obesity- and nutrient-related gene polymorphisms but not FTO and UCP variants modulate postabsorptive resting energy expenditure and fat-induced thermogenesis in obese individuals: the NUGENOB Study. International Journal of Obesity, 2009, 33, 669-679.	3.4	35
51	Subcutaneous Adipose Tissue and Systemic Inflammation Are Associated With Peripheral but Not Hepatic Insulin Resistance in Humans. Diabetes, 2019, 68, 2247-2258.	0.6	35
52	Diet-induced weight loss decreases adipose tissue oxygen tension with parallel changes in adipose tissue phenotype and insulin sensitivity in overweight humans. International Journal of Obesity, 2017, 41, 722-728.	3.4	33
53	Shortâ€ŧerm bed restâ€induced insulin resistance cannot be explained by increased mitochondrial H ₂ O ₂ emission. Journal of Physiology, 2020, 598, 123-137.	2.9	32
54	Resveratrol supplementation reduces ACE2 expression in human adipose tissue. Adipocyte, 2021, 10, 408-411.	2.8	32

#	Article	IF	CITATIONS
55	Does interference with the renin–angiotensin system protect against diabetes? Evidence and mechanisms. Diabetes, Obesity and Metabolism, 2012, 14, 586-595.	4.4	31
56	Adipose tissue autophagy related gene expression is associated with glucometabolic status in human obesity. Adipocyte, 2018, 7, 12-19.	2.8	31
57	The effects of polyphenol supplementation on adipose tissue morphology and gene expression in overweight and obese humans. Adipocyte, 2018, 7, 190-196.	2.8	31
58	Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H ₂ O ₂ emission rates in human skeletal muscle. Journal of Physiology, 2019, 597, 3985-3997.	2.9	31
59	Effect of Sacubitril/Valsartan on Exercise-Induced Lipid Metabolism in Patients With Obesity and Hypertension. Hypertension, 2018, 71, 70-77.	2.7	29
60	Skeletal Muscle Lipase Content and Activity in Obesity and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 5449-5453.	3.6	26
61	Vitamin D and Tissue-Specific Insulin Sensitivity in Humans With Overweight/Obesity. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 49-56.	3.6	25
62	Shortâ€ŧerm βâ€∎drenergic regulation of leptin, adiponectin and interleukinâ€6 secretion <i>in vivo </i> in lean and obese subjects. Diabetes, Obesity and Metabolism, 2008, 10, 1029-1038.	4.4	23
63	Altered skeletal muscle fatty acid handling is associated with the degree of insulin resistance in overweight and obese humans. Diabetologia, 2016, 59, 2686-2696.	6.3	23
64	A 3-day EGCG-supplementation reduces interstitial lactate concentration in skeletal muscle of overweight subjects. Scientific Reports, 2016, 5, 17896.	3.3	22
65	Muscle fiber capillarization as determining factor on indices of insulin sensitivity in humans. Physiological Reports, 2017, 5, e13278.	1.7	22
66	Impaired insulin sensitivity is accompanied by disturbances in skeletal muscle fatty acid handling in subjects with impaired glucose metabolism. International Journal of Obesity, 2012, 36, 709-717.	3.4	21
67	Individual and cohort-specific gut microbiota patterns associated with tissue-specific insulin sensitivity in overweight and obese males. Scientific Reports, 2020, 10, 7523.	3.3	21
68	Altered Skeletal Muscle Fatty Acid Handling in Subjects with Impaired Glucose Tolerance as Compared to Impaired Fasting Glucose. Nutrients, 2016, 8, 164.	4.1	20
69	Contribution of lipase deficiency to mitochondrial dysfunction and insulin resistance in hMADS adipocytes. International Journal of Obesity, 2016, 40, 507-513.	3.4	20
70	A comparison between the abdominal and femoral adipose tissue proteome of overweight and obese women. Scientific Reports, 2019, 9, 4202.	3.3	20
71	Gut microbiota composition strongly correlates to peripheral insulin sensitivity in obese men but not in women. Beneficial Microbes, 2017, 8, 557-562.	2.4	19
72	Adipose tissue oxygenation is associated with insulin sensitivity independently of adiposity in obese men and women. Diabetes, Obesity and Metabolism, 2018, 20, 2286-2290.	4.4	18

#	Article	IF	CITATIONS
73	Improved quantification of muscle insulin sensitivity using oral glucose tolerance test data: the MISI Calculator. Scientific Reports, 2019, 9, 9388.	3.3	18
74	Differences in Upper and Lower Body Adipose Tissue Oxygen Tension Contribute to the Adipose Tissue Phenotype in Humans. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3688-3697.	3.6	15
75	Plasma cathepsin D activity is negatively associated with hepatic insulin sensitivity in overweight and obese humans. Diabetologia, 2020, 63, 374-384.	6.3	15
76	OBEDIS Core Variables Project: European Expert Guidelines on a Minimal Core Set of Variables to Include in Randomized, Controlled Clinical Trials of Obesity Interventions. Obesity Facts, 2020, 13, 1-28.	3.4	15
77	Effect of short-term ACE inhibitor treatment on peripheral insulin sensitivity in obese insulin-resistant subjects. Diabetologia, 2006, 49, 3009-3016.	6.3	14
78	Adrenergically and non-adrenergically mediated human adipose tissue lipolysis during acute exercise and exercise training. Clinical Science, 2018, 132, 1685-1698.	4.3	14
79	Angiopoietin-Like Protein 4 and Postprandial Skeletal Muscle Lipid Metabolism in Overweight and Obese Prediabetics. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2332-2339.	3.6	13
80	The PERSonalized Glucose Optimization Through Nutritional Intervention (PERSON) Study: Rationale, Design and Preliminary Screening Results. Frontiers in Nutrition, 2021, 8, 694568.	3.7	13
81	Valsartan-induced improvement in insulin sensitivity is not paralleled by changes in microvascular function in individuals with impaired glucose metabolism. Journal of Hypertension, 2011, 29, 1955-1962.	0.5	11
82	The effects of amoxicillin and vancomycin on parameters reflecting cholesterol metabolism. Chemistry and Physics of Lipids, 2017, 207, 239-245.	3.2	10
83	Vaccinating People with Obesity for COVID-19: EASO Call for Action. Obesity Facts, 2021, 14, 334-335.	3.4	9
84	The impact of hypoxia exposure on glucose homeostasis in metabolically compromised humans: A systematic review. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 471-483.	5.7	9
85	Sexual Dimorphism in Body Weight Loss, Improvements in Cardiometabolic Risk Factors and Maintenance of Beneficial Effects 6 Months after a Low-Calorie Diet: Results from the Randomized Controlled DiOGenes Trial. Nutrients, 2021, 13, 1588.	4.1	9
86	Human Adipose Tissue Blood Flow and Micromanipulation of Human Subcutaneous Blood Flow. Methods in Molecular Biology, 2008, 456, 97-107.	0.9	9
87	Effect of diet-induced weight loss on angiopoietin-like protein 4 and adipose tissue lipid metabolism in overweight and obese humans. Physiological Reports, 2018, 6, e13735.	1.7	8
88	Mild intermittent hypoxia exposure induces metabolic and molecular adaptations in men with obesity. Molecular Metabolism, 2021, 53, 101287.	6.5	8
89	Short-Term Microbiota Manipulation and Forearm Substrate Metabolism in Obese Men: A Randomized, Double-Blind, Placebo-Controlled Trial. Obesity Facts, 2018, 11, 318-326.	3.4	7

90 Adipose tissue metabolism and inflammation in obesity. , 2019, , 1-22.

#	Article	IF	CITATIONS
91	The angiotensin II type 1 receptor blocker valsartan in the battle against COVIDâ€19. Obesity, 2021, 29, 1423-1426.	3.0	7
92	The effects of hydralazine on lipolysis in subcutaneous adipose tissue in humans. Metabolism: Clinical and Experimental, 2007, 56, 1742-1748.	3.4	6
93	The Effects of Long-Term Valsartan Treatment on Skeletal Muscle Fatty Acid Handling in Humans With Impaired Glucose Metabolism. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E891-E896.	3.6	6
94	Cathepsin gene expression in abdominal subcutaneous adipose tissue of obese/overweight humans. Adipocyte, 2020, 9, 246-252.	2.8	6
95	Measurement of human abdominal and femoral intravascular adipose tissue blood flow using percutaneous Doppler ultrasound. Adipocyte, 2021, 10, 119-123.	2.8	6
96	Gut Microbiota Regulate Pancreatic Growth, Exocrine Function, and Gut Hormones. Diabetes, 2022, 71, 945-960.	0.6	6
97	Comment on Lecoultre et al. Ten Nights of Moderate Hypoxia Improves Insulin Sensitivity in Obese Humans. Diabetes Care 2013;36:e197–e198. Diabetes Care, 2014, 37, e155-e156.	8.6	4
98	Vitamin D release across abdominal adipose tissue in lean and obese men: The effect of ßâ€adrenergic stimulation. Physiological Reports, 2019, 7, e14308.	1.7	4
99	The Effects of Mild Intermittent Hypoxia Exposure on the Abdominal Subcutaneous Adipose Tissue Proteome in Overweight and Obese Men: A First-in-Human Randomized, Single-Blind, and Cross-Over Study. Frontiers in Physiology, 2021, 12, 791588.	2.8	2
100	C-reactive protein mediates the association of liver fat and carotid intima–media thickness in healthy men and men with the metabolic syndrome and/or uncomplicated type 2 diabetes. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2010, 4, 160-164.	3.6	1
101	What Is the Value of Obesity Research? – Comment on Blundell JE, Hebebrand J, Oppert JM. What is the value of obesity research? Obes Facts 2010;3:279–282 Obesity Facts, 2012, 5, 298-304.	3.4	1
102	Unraveling the Pathophysiology of Obesity-Related Insulin Resistance—A Perspective on "Adipose Tissue Inflammation Is Directly Linked to Obesity-Induced Insulin Resistance, while Gut Dysbiosis and Mitochondrial Dysfunction Are Not Required― Function, 2020, 1, zqaa021.	2.3	1
103	The impact of hormone therapy on cardiometabolic risk factors in trans persons: Implications and future perspectives. Journal of Clinical Endocrinology and Metabolism, 2021, , .	3.6	1
104	Comment On Espinosa De Ycaza et al. Adipose Tissue Inflammation Is Not Related to Adipose Insulin Resistance in Humans. Diabetes 2022;71:381–393. Diabetes, 2022, 71, e6-e7.	0.6	1
105	Fecal carriage of <i>vanB</i> antibiotic resistance gene affects adipose tissue function under vancomycin use. Gut Microbes, 2022, 14, .	9.8	1
106	PS15 - 78. Increased adipose tissue oxygen tension in obesity is accompanied by insulin resistance, impaired adipose tissue capillarisation and inflammation. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 143-144.	0.0	0
107	Response to Letter Regarding Article, "Increased Adipose Tissue Oxygen Tension in Obese Compared With Lean Men Is Accompanied by Insulin Resistance, Impaired Adipose Tissue Capillarization, and Inflammation― Circulation, 2012, 125, .	1.6	0
108	Effects of gut microbiota manipulation on ex vivo lipolysis in human abdominal subcutaneous adipocytes. Adipocyte, 2018, 7, 1-7.	2.8	0

#	Article	IF	CITATIONS
109	The air that we (do not) breathe: lower adipose tissue oxygen availability in patients with obesity hypoventilation syndrome?. International Journal of Obesity, 2021, 45, 1161-1162.	3.4	Ο