## Eugene V Radchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3397141/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Virtual Computational Chemistry Laboratory – Design and Description. Journal of Computer-Aided<br>Molecular Design, 2005, 19, 453-463.                                                                                                                                       | 1.3 | 1,250     |
| 2  | Online chemical modeling environment (OCHEM): web platform for data storage, model development<br>and publishing of chemical information. Journal of Computer-Aided Molecular Design, 2011, 25, 533-554.                                                                     | 1.3 | 453       |
| 3  | Prediction of human intestinal absorption of drug compounds. Russian Chemical Bulletin, 2016, 65, 576-580.                                                                                                                                                                   | 0.4 | 74        |
| 4  | Progress in visual representations of chemical space. Expert Opinion on Drug Discovery, 2015, 10, 959-973.                                                                                                                                                                   | 2.5 | 68        |
| 5  | Organophosphorus compound esterase profiles as predictors of therapeutic and toxic effects.<br>Chemico-Biological Interactions, 2013, 203, 231-237.                                                                                                                          | 1.7 | 66        |
| 6  | Nonpeptide Inhibitors of Measles Virus Entry. Journal of Medicinal Chemistry, 2006, 49, 5080-5092.                                                                                                                                                                           | 2.9 | 65        |
| 7  | Molecular Field Topology Analysis Method in QSAR Studies of Organic Compounds. Journal of Chemical Information and Computer Sciences, 2000, 40, 659-667.                                                                                                                     | 2.8 | 61        |
| 8  | Computer-aided estimation of the hERG-mediated cardiotoxicity risk of potential drug components.<br>Doklady Biochemistry and Biophysics, 2017, 473, 128-131.                                                                                                                 | 0.3 | 47        |
| 9  | Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for<br>Alzheimer's disease treatment: Synthesis, quantum-chemical characterization, molecular docking, and<br>biological evaluation. Bioorganic Chemistry, 2020, 94, 103387. | 2.0 | 44        |
| 10 | Prediction of blood-brain barrier permeability of organic compounds. Doklady Biochemistry and<br>Biophysics, 2016, 470, 371-374.                                                                                                                                             | 0.3 | 43        |
| 11 | Combined QSAR studies of inhibitor properties of <i>O</i> -phosphorylated oximes toward serine esterases involved in neurotoxicity, drug metabolism and Alzheimer's disease. SAR and QSAR in Environmental Research, 2012, 23, 627-647.                                      | 1.0 | 37        |
| 12 | Molecular design, synthesis and biological evaluation of cage compound-based inhibitors of hepatitis<br>C virus p7 ion channels. European Journal of Medicinal Chemistry, 2018, 158, 214-235.                                                                                | 2.6 | 32        |
| 13 | New Multifunctional Agents Based on Conjugates of 4-Amino-2,3-polymethylenequinoline and<br>Butylated Hydroxytoluene for Alzheimer's Disease Treatment. Molecules, 2020, 25, 5891.                                                                                           | 1.7 | 28        |
| 14 | New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of<br>Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer's Disease<br>Treatment. Molecules, 2020, 25, 3915.                                   | 1.7 | 26        |
| 15 | Machine Learning Classification Models to Improve the Dockingâ€based Screening: A Case of<br>PI3Kâ€Tankyrase Inhibitors. Molecular Informatics, 2018, 37, e1800030.                                                                                                          | 1.4 | 24        |
| 16 | Synthesis, molecular docking, and biological evaluation of<br>3-oxo-2-tolylhydrazinylidene-4,4,4-trifluorobutanoates bearing higher and natural alcohol moieties as<br>new selective carboxylesterase inhibitors. Bioorganic Chemistry, 2019, 91, 103097.                    | 2.0 | 23        |
| 17 | Time-Domain Analysis of Molecular Dynamics Trajectories Using Deep Neural Networks: Application to<br>Activity Ranking of Tankyrase Inhibitors. Journal of Chemical Information and Modeling, 2019, 59,<br>3519-3532.                                                        | 2.5 | 23        |
| 18 | Towards Deep Neural Network Models for the Prediction of the Blood–Brain Barrier Permeability for<br>Diverse Organic Compounds. Molecules, 2020, 25, 5901.                                                                                                                   | 1.7 | 22        |

Eugene V Radchenko

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for<br>Alzheimer's disease treatment. Bioorganic Chemistry, 2021, 112, 104974.                                                                         | 2.0 | 22        |
| 20 | Synthesis and biological evaluation of novel 5-hydroxylaminoisoxazole derivatives as lipoxygenase inhibitors and metabolism enhancing agents. Bioorganic and Medicinal Chemistry, 2016, 24, 712-720.                                              | 1.4 | 19        |
| 21 | Modeling of the relationships between the structure of O-phosphorylated oximes and their<br>anticholinesterase activity and selectivity using molecular field topology analysis (MFTA). Doklady<br>Biochemistry and Biophysics, 2008, 418, 47-51. | 0.3 | 18        |
| 22 | Discovery of Novel Tankyrase Inhibitors through Molecular Docking-Based Virtual Screening and Molecular Dynamics Simulation Studies. Molecules, 2020, 25, 3171.                                                                                   | 1.7 | 18        |
| 23 | Structural requirements for molecular design of positive allosteric modulators of AMPA receptor.<br>Mendeleev Communications, 2017, 27, 623-625.                                                                                                  | 0.6 | 16        |
| 24 | Complex formation of albumin with tricarbocyanine dyes containing phosphonate groups.<br>Photochemical and Photobiological Sciences, 2016, 15, 1377-1384.                                                                                         | 1.6 | 13        |
| 25 | Novel potent bifunctional carboxylesterase inhibitors based on a polyfluoroalkyl-2-imino-1,3-dione<br>scaffold. European Journal of Medicinal Chemistry, 2021, 218, 113385.                                                                       | 2.6 | 13        |
| 26 | Molecular Field Topology Analysis in Drug Design and Virtual Screening. , 2008, , 150-181.                                                                                                                                                        |     | 12        |
| 27 | A Facile Approach to Bis(isoxazoles), Promising Ligands of the AMPA Receptor. Molecules, 2021, 26, 6411.                                                                                                                                          | 1.7 | 11        |
| 28 | Molecular design of O-phosphorylated oximes—Selective inhibitors of butyrylcholinesterase. Doklady<br>Biochemistry and Biophysics, 2012, 443, 91-95.                                                                                              | 0.3 | 10        |
| 29 | Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization<br>Determines the Multitarget Anti-Alzheimer's Activity Profile. Molecules, 2022, 27, 1060.                                                      | 1.7 | 10        |
| 30 | Study of the structural determinants of acute and delayed neurotoxicity of O-phosphorylated oximes by molecular field topology analysis (MFTA). Doklady Biochemistry and Biophysics, 2009, 429, 309-314.                                          | 0.3 | 9         |
| 31 | Ab Initio Kinetic Modeling of Living Anionic and Zwitterionic Chain Polymerization Mechanisms.<br>Macromolecules, 2010, 43, 9674-9681.                                                                                                            | 2.2 | 9         |
| 32 | Ramified derivatives of 5-(perylen-3-ylethynyl)uracil-1-acetic acid and their antiviral properties. RSC<br>Advances, 2019, 9, 26014-26023.                                                                                                        | 1.7 | 8         |
| 33 | Generation of chemical structures on the basis of QSAR models of molecular field topology analysis.<br>Doklady Chemistry, 2007, 415, 196-199.                                                                                                     | 0.2 | 7         |
| 34 | Computer-aided design of selective ligands of the benzodiazepine-binding site of the GABAA receptor.<br>Doklady Chemistry, 2008, 422, 227-230.                                                                                                    | 0.2 | 7         |
| 35 | Design of Broad-Spectrum Inhibitors of Influenza A Virus M2 Proton Channels: A Molecular Modeling<br>Approach. Current Computer-Aided Drug Design, 2016, 12, 154-164.                                                                             | 0.8 | 6         |
| 36 | Molecular design of N,N-disubstituted 2-aminothiazolines as selective carboxylesterase inhibitors.<br>Russian Chemical Bulletin, 2016, 65, 570-575.                                                                                               | 0.4 | 6         |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Bis-γ-carbolines as new potential multitarget agents for Alzheimer's disease. Pure and Applied<br>Chemistry, 2020, 92, 1057-1080.                                                                           | 0.9 | 6         |
| 38 | Novel substituted 5â€methylâ€4â€acylaminoisoxazoles as antimitotic agents: Evaluation of selectivity to<br>LNCaP cancer cells. Archiv Der Pharmazie, 2022, 355, e2100425.                                   | 2.1 | 6         |
| 39 | Positive and negative AMPA receptor modulators based on tricyclic bispidine derivative: Minor structural change inverts the type of activity. Mendeleev Communications, 2022, 32, 360-363.                  | 0.6 | 6         |
| 40 | On mechanism of allosteric modulation of NMDA receptor via amino-terminal domains. Biochemical and Biophysical Research Communications, 2012, 424, 687-690.                                                 | 1.0 | 5         |
| 41 | Influence of Descriptor Implementation on Compound Ranking Based on Multiparameter Assessment.<br>Journal of Chemical Information and Modeling, 2018, 58, 1083-1093.                                        | 2.5 | 4         |
| 42 | Computer-aided design of arylphthalazines as potential smoothened receptor antagonists. Doklady<br>Chemistry, 2012, 443, 97-100.                                                                            | 0.2 | 3         |
| 43 | Computer-aided modeling of activity and selectivity of quinazolinones as noncompetitive NMDA receptor antagonists. Doklady Biochemistry and Biophysics, 2012, 443, 118-122.                                 | 0.3 | 3         |
| 44 | New phosphonate-substituted tricarbocyanines and their interaction with bovine serum albumin.<br>Doklady Chemistry, 2016, 470, 264-267.                                                                     | 0.2 | 3         |
| 45 | Computer-aided design of negative allosteric modulators of NMDA receptor. Doklady Biochemistry and Biophysics, 2013, 448, 22-26.                                                                            | 0.3 | 2         |
| 46 | Molecular design of selective ligands of chemokine receptors. Doklady Biochemistry and Biophysics, 2015, 461, 131-134.                                                                                      | 0.3 | 2         |
| 47 | Molecular design of proneurogenic and neuroprotective compounds—allosteric NMDA receptor<br>modulators. Doklady Biochemistry and Biophysics, 2017, 473, 132-136.                                            | 0.3 | 2         |
| 48 | Analysis of Chemical Spaces: Implications for Drug Repurposing. , 2019, , 359-395.                                                                                                                          |     | 2         |
| 49 | Molecular modeling of the transmembrane domain of mGluR2 metabotropic glutamate receptor and the binding site of its positive allosteric modulators. Doklady Biochemistry and Biophysics, 2014, 454, 13-16. | 0.3 | 1         |
| 50 | Generalized fragmental approach in QSAR/QSPR studies. Doklady Chemistry, 2015, 463, 185-188.                                                                                                                | 0.2 | 1         |
| 51 | Molecular Field Topology Analysis (MFTA) in the Design of Neuroprotective Compounds.<br>Neuromethods, 2018, , 139-159.                                                                                      | 0.2 | 0         |
| 52 | Molecular Field Topology Analysis (MFTA) as the Basis for Molecular Design. , 2000, , 460-461.                                                                                                              |     | 0         |