List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3397081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD36â€Binding Amphiphilic Nanoparticles for Attenuation of αâ€Synucleinâ€Induced Microglial Activation. Advanced NanoBiomed Research, 2022, 2, .	1.7	2
2	Fluorescence-based actin turnover dynamics of stem cells as a profiling method for stem cell functional evolution, heterogeneity and phenotypic lineage parsing. Methods, 2021, 190, 44-54.	1.9	3
3	Short-Wave Infrared Emitting Nanocomposites for Fluorescence-Guided Surgery. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-7.	1.9	0
4	Extracellular Vesicle Molecular Signatures Characterize Metastatic Dynamicity in Ovarian Cancer. Frontiers in Oncology, 2021, 11, 718408.	1.3	3
5	Peptide-Based Scaffolds for the Culture and Transplantation of Human Dopaminergic Neurons. Tissue Engineering - Part A, 2020, 26, 193-205.	1.6	16
6	Shortwave infrared emitting multicolored nanoprobes for biomarker-specific cancer imaging in vivo. BMC Cancer, 2020, 20, 1082.	1.1	5
7	Shortwave Infrared-Emitting Theranostics for Breast Cancer Therapy Response Monitoring. Frontiers in Molecular Biosciences, 2020, 7, 569415.	1.6	11
8	Microglia-targeting nanotherapeutics for neurodegenerative diseases. APL Bioengineering, 2020, 4, 030902.	3.3	49
9	Antioxidant Nanoparticles for Concerted Inhibition of α-Synuclein Fibrillization, and Attenuation of Microglial Intracellular Aggregation and Activation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 112.	2.0	26
10	The COVID-19 pandemic and research shutdown: staying safe and productive. Journal of Clinical Investigation, 2020, 130, 2745-2748.	3.9	125
11	Fluorescence Imaging of Actin Turnover Parses Early Stem Cell Lineage Divergence and Senescence. Scientific Reports, 2019, 9, 10377.	1.6	17
12	Surface-Modified Shortwave-Infrared-Emitting Nanophotonic Reporters for Gene-Therapy Applications. ACS Biomaterials Science and Engineering, 2018, 4, 2350-2363.	2.6	11
13	"Ruffled border―formation on a CaP-free substrate: A first step towards osteoclast-recruiting bone-grafts materials able to re-establish bone turn-over. Journal of Materials Science: Materials in Medicine, 2018, 29, 38.	1.7	6
14	Nanotherapeutics Containing Lithocholic Acid-Based Amphiphilic Scorpion-Like Macromolecules Reduce In Vitro Inflammation in Macrophages: Implications for Atherosclerosis. Nanomaterials, 2018, 8, 84.	1.9	10
15	Engineering Lineage Potency and Plasticity of Stem Cells using Epigenetic Molecules. Scientific Reports, 2018, 8, 16289.	1.6	5
16	Substrate micropatterns produced by polymer demixing regulate focal adhesions, actin anisotropy, and lineage differentiation of stem cells. Acta Biomaterialia, 2018, 76, 21-28.	4.1	21
17	Parsing Stem Cell Lineage Development Using High Content Image Analysis of Epigenetic Spatial Markers. Current Protocols in Stem Cell Biology, 2018, 46, e54.	3.0	0
18	Multiscale optical imaging of rare-earth-doped nanocomposites in a small animal model. Journal of Biomedical Optics, 2018, 23, 1.	1.4	10

#	Article	IF	CITATIONS
19	Rare-earth doped nanocomposites enable multiscale targeted short-wave infrared imaging of metastatic breast cancer. Proceedings of SPIE, 2017, , .	0.8	1
20	Athero-inflammatory nanotherapeutics: Ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation. Acta Biomaterialia, 2017, 57, 85-94.	4.1	36
21	High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation. Experimental Cell Research, 2017, 351, 11-23.	1.2	10
22	Optical High Content Nanoscopy of Epigenetic Marks Decodes Phenotypic Divergence in Stem Cells. Scientific Reports, 2017, 7, 39406.	1.6	5
23	Surveillance nanotechnology for multi-organ cancer metastases. Nature Biomedical Engineering, 2017, 1, 993-1003.	11.6	51
24	Self-Assembling Peptide Nanofiber Scaffolds for 3-D Reprogramming and Transplantation of Human Pluripotent Stem Cell-Derived Neurons. ACS Biomaterials Science and Engineering, 2016, 2, 1030-1038.	2.6	53
25	Profiling stem cell states in three-dimensional biomaterial niches using high content image informatics. Acta Biomaterialia, 2016, 45, 98-109.	4.1	19
26	Polymer brain-nanotherapeutics for multipronged inhibition of microglial α-synuclein aggregation, activation, and neurotoxicity. Biomaterials, 2016, 111, 179-189.	5.7	19
27	α-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Experimental Neurology, 2016, 285, 72-81.	2.0	51
28	Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds. Nature Communications, 2016, 7, 10862.	5.8	109
29	Convergence of Highly Resolved and Rapid Screening Platforms with Dynamically Engineered, Cell Phenotype-Prescriptive Biomaterials. Current Pharmacology Reports, 2016, 2, 142-151.	1.5	3
30	Micellar and structural stability of nanoscale amphiphilic polymers: Implications for anti-atherosclerotic bioactivity. Biomaterials, 2016, 84, 230-240.	5.7	74
31	Amphiphilic macromolecule nanoassemblies suppress smooth muscle cell proliferation and platelet adhesion. Biomaterials, 2016, 84, 219-229.	5.7	14
32	High throughput strategies for the design, discovery, and analysis of biomaterials. Acta Biomaterialia, 2016, 34, v-vi.	4.1	4
33	Nanotherapeutics for inhibition of atherogenesis and modulation of inflammation in atherosclerotic plaques. Cardiovascular Research, 2016, 109, 283-293.	1.8	24
34	High-Resolution Imaging of Molecularly Targeted Rare-Earth Based Nanocomposites. , 2016, , .		0
35	CXCRâ€4 Targeted, Short Wave Infrared (SWIR) Emitting Nanoprobes for Enhanced Deep Tissue Imaging and Micrometastatic Cancer Lesion Detection. Small, 2015, 11, 6347-6357.	5.2	58
36	Carbohydrate-Derived Amphiphilic Macromolecules: A Biophysical Structural Characterization and Analysis of Binding Behaviors to Model Membranes. Journal of Functional Biomaterials, 2015, 6, 171-191.	1.8	2

#	Article	IF	CITATIONS
37	Organizational metrics of interchromatin speckle factor domains: integrative classifier for stem cell adhesion & lineage signaling. Integrative Biology (United Kingdom), 2015, 7, 435-446.	0.6	11
38	Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents. Journal of Biomedical Optics, 2015, 20, 110506.	1.4	12
39	Sugar-based amphiphilic nanoparticles arrest atherosclerosis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2693-2698.	3.3	101
40	Tartaric acid-based amphiphilic macromolecules with ether linkages exhibit enhanced repression of oxidized low density lipoprotein uptake. Biomaterials, 2015, 53, 32-39.	5.7	42
41	Targeting tumor metastases: Drug delivery mechanisms and technologies. Journal of Controlled Release, 2015, 219, 215-223.	4.8	32
42	NuMA promotes homologous recombination repair by regulating the accumulation of the ISWI ATPase SNF2h at DNA breaks. Nucleic Acids Research, 2014, 42, 6365-6379.	6.5	58
43	Polymeric nanoparticles as immunomodulatory vaccine adjuvants for atherosclerosis. , 2014, , .		0
44	Rare earth nanoprobes for functional biomolecular imaging and theranostics. Journal of Materials Chemistry B, 2014, 2, 2958-2973.	2.9	68
45	Impact of Hydrophobic Chain Composition on Amphiphilic Macromolecule Antiatherogenic Bioactivity. Biomacromolecules, 2014, 15, 3328-3337.	2.6	11
46	Amphiphilic Nanoparticles Repress Macrophage Atherogenesis: Novel Core/Shell Designs for Scavenger Receptor Targeting and Down-Regulation. Molecular Pharmaceutics, 2014, 11, 2815-2824.	2.3	29
47	Engineered N-cadherin and L1 biomimetic substrates concertedly promote neuronal differentiation, neurite extension and neuroprotection of human neural stem cells. Acta Biomaterialia, 2014, 10, 4113-4126.	4.1	29
48	Coarse Grained Molecular Dynamics of Engineered Macromolecules for the Inhibition of Oxidized Low-Density Lipoprotein Uptake by Macrophage Scavenger Receptors. Biomacromolecules, 2013, 14, 2499-2509.	2.6	7
49	In silico design of anti-atherogenic biomaterials. Biomaterials, 2013, 34, 7950-7959.	5.7	18
50	Dimeric Gold Nanoparticle Assemblies as Tags for SERSâ€Based Cancer Detection. Advanced Healthcare Materials, 2013, 2, 1370-1376.	3.9	91
51	Multifunctional Albumin Nanoparticles As Combination Drug Carriers for Intraâ€Tumoral Chemotherapy. Advanced Healthcare Materials, 2013, 2, 1236-1245.	3.9	55
52	Nanoscale Amphiphilic Macromolecules with Variable Lipophilicity and Stereochemistry Modulate Inhibition of Oxidized Low-Density Lipoprotein Uptake. Biomacromolecules, 2013, 14, 2463-2469.	2.6	10
53	A High Content Imaging-Based Approach for Classifying Cellular Phenotypes. Methods in Molecular Biology, 2013, 1052, 41-48.	0.4	2
54	Interconnected contribution of tissue morphogenesis and the nuclear protein NuMA to the DNA damage response. Journal of Cell Science, 2012, 125, 350-361.	1.2	39

#	Article	IF	CITATIONS
55	E-Cadherin-Expressing Feeder Cells Promote Neural Lineage Restriction of Human Embryonic Stem Cells. Stem Cells and Development, 2012, 21, 30-41.	1.1	10
56	Microfibrous substrate geometry as a critical trigger for organization, selfâ€renewal, and differentiation of human embryonic stem cells within synthetic 3â€dimensional microenvironments. FASEB Journal, 2012, 26, 3240-3251.	0.2	50
57	High-Content Imaging-Based Screening of Microenvironment-Induced Changes to Stem Cells. Journal of Biomolecular Screening, 2012, 17, 1151-1162.	2.6	27
58	Carbohydrate composition of amphiphilic macromolecules influences physicochemical properties and binding to atherogenic scavenger receptor A. Acta Biomaterialia, 2012, 8, 3956-3962.	4.1	28
59	Impact of ionizing radiation on physicochemical and biological properties of an amphiphilic macromolecule. Polymer Degradation and Stability, 2012, 97, 1686-1689.	2.7	7
60	Kinetically Assembled Nanoparticles of Bioactive Macromolecules Exhibit Enhanced Stability and Cellâ€Targeted Biological Efficacy. Advanced Materials, 2012, 24, 733-739.	11.1	52
61	Oriented, Multimeric Biointerfaces of the L1 Cell Adhesion Molecule: An Approach to Enhance Neuronal and Neural Stem Cell Functions on 2-D and 3-D Polymer Substrates. Biointerphases, 2012, 7, 22.	0.6	15
62	Dual use of amphiphilic macromolecules as cholesterol efflux triggers and inhibitors of macrophage athero-inflammation. Biomaterials, 2011, 32, 8319-8327.	5.7	27
63	Nanomaterials Can Dynamically Steer Cell Responses to Biological Ligands. Small, 2011, 7, 242-251.	5.2	5
64	Polymerâ€based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 400-420.	3.3	61
65	Controllable inhibition of cellular uptake of oxidized low-density lipoprotein: Structure–function relationships for nanoscale amphiphilic polymers. Acta Biomaterialia, 2010, 6, 3081-3091.	4.1	32
66	Albumin Nanoshell Encapsulation of Nearâ€Infraredâ€Excitable Rareâ€Earth Nanoparticles Enhances Biocompatibility and Enables Targeted Cell Imaging. Small, 2010, 6, 1631-1640.	5.2	60
67	Parsing the early cytoskeletal and nuclear organizational cues that demarcate stem cell lineages. Cell Cycle, 2010, 9, 2108-2117.	1.3	25
68	Cytoskeleton-based forecasting of stem cell lineage fates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 610-615.	3.3	258
69	Poly(ethylene glycol) as a sensitive regulator of cell survival fate on polymeric biomaterials: the interplay of cell adhesion and pro-oxidant signaling mechanisms. Soft Matter, 2010, 6, 5196.	1.2	31
70	Synthetic polymeric substrates as potent proâ€oxidant versus antiâ€oxidant regulators of cytoskeletal remodeling and cell apoptosis. Journal of Cellular Physiology, 2009, 218, 549-557.	2.0	20
71	Structureâ	2.6	23
72	High-Content Profiling of Cell Responsiveness to Graded Substrates Based on Combinatorially Variant Polymers. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 646-655.	0.6	14

#	Article	IF	CITATIONS
73	Convergence of Nanotechnology and Cardiovascular Medicine. BioDrugs, 2008, 22, 1-10.	2.2	36
74	Engineered Cell-Adhesive Nanoparticles Nucleate Extracellular Matrix Assembly. Tissue Engineering, 2007, 13, 567-578.	4.9	7
75	Profiling cell-biomaterial interactions via cell-based fluororeporter imaging. BioTechniques, 2007, 43, 361-368.	0.8	21
76	Nanoscale amphiphilic macromolecules as lipoprotein inhibitors: the role of charge and architecture. International Journal of Nanomedicine, 2007, 2, 697-705.	3.3	19
77	Engineered Polymeric Nanoparticles for Receptor-Targeted Blockage of Oxidized Low Density Lipoprotein Uptake and Atherogenesis in Macrophages. Biomacromolecules, 2006, 7, 1796-1805.	2.6	51
78	Nanoscale Anionic Macromolecules Can Inhibit Cellular Uptake of Differentially Oxidized LDL. Biomacromolecules, 2006, 7, 597-603.	2.6	41
79	Albumin-derived nanocarriers: Substrates for enhanced cell adhesive ligand display and cell motility. Biomaterials, 2006, 27, 3589-98.	5.7	14
80	Nanoscale anionic macromolecules for selective retention of low-density lipoproteins. Biomaterials, 2005, 26, 3749-3758.	5.7	41
81	Cytomimetic Engineering of Hepatocyte Morphogenesis and Function by Substrate-Based Presentation of Acellular E-Cadherin. Tissue Engineering, 2005, 11, 734-750.	4.9	17
82	Exogenous cadherin microdisplay can interfere with endogenous signaling and reprogram gene expression in cultured hepatocytes. Biotechnology and Bioengineering, 2004, 85, 283-292.	1.7	12
83	Poly(ethylene glycol) enhances cell motility on protein-based poly(ethylene glycol)-polycarbonate substrates: A mechanism for cell-guided ligand remodeling. Journal of Biomedical Materials Research Part B, 2004, 69A, 114-123.	3.0	19
84	Regulation of Cell Motility on Polymer Substrates via "Dynamic," Cell Internalizable, Ligand Microinterfaces. Tissue Engineering, 2002, 8, 247-261.	4.9	25
85	Cell Migration on Cell-Internalizable Ligand Microdepots: A Phenomenological Model. Annals of Biomedical Engineering, 2002, 30, 851-866.	1.3	5
86	Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density. Journal of Biomedical Materials Research Part B, 2001, 54, 149-161.	3.0	99
87	Functional engineering of hepatocytes via heterocellular presentation of a homoadhesive molecule, Eâ€cadherin. Biotechnology and Bioengineering, 2001, 76, 295-302.	1.7	29
88	Engineering hepatocyte functional fate through growth factor dynamics: The role of cell morphologic priming. Biotechnology and Bioengineering, 2001, 75, 510-520.	1.7	28
89	Mechanochemical manipulation of hepatocyte aggregation can selectively induce or repress liver-specific function. Biotechnology and Bioengineering, 2000, 69, 359-369.	1.7	118
90	Polymer Substrate Topography Actively Regulates the Multicellular Organization and Liver-Specific Functions of Cultured Hepatocytes. Tissue Engineering, 1999, 5, 407-420.	4.9	87

#	Article	IF	CITATIONS
91	Analysis of 3-D microstructure of porous poly(lactide-glycolide) matrices using confocal microscopy. Journal of Biomedical Materials Research Part B, 1998, 43, 291-299.	3.0	27
92	Analysis of Surface Microtopography of Biodegradable Polymer Matrices Using Confocal Reflection Microscopy. Biotechnology Progress, 1997, 13, 630-634.	1.3	20
93	Cell-cell interactions are essential for maintenance of hepatocyte function in collagen gel but not on matrigel. , 1997, 56, 706-711.		61
94	Cell-cell interactions are essential for maintenance of hepatocyte function in collagen gel but not on matrigel. , 1997, 56, 706.		9