Anna Piotrowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3396937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maraviroc reduces neuropathic pain through polarization of microglia and astroglia – Evidence from inÂvivo and inÂvitro studies. Neuropharmacology, 2016, 108, 207-219.	4.1	91
2	Targeting the NLRP3 Inflammasome-Related Pathways via Tianeptine Treatment-Suppressed Microglia Polarization to the M1 Phenotype in Lipopolysaccharide-Stimulated Cultures. International Journal of Molecular Sciences, 2018, 19, 1965.	4.1	84
3	Parthenolide Relieves Pain and Promotes M2 Microglia/Macrophage Polarization in Rat Model of Neuropathy. Neural Plasticity, 2015, 2015, 1-15.	2.2	80
4	Blockade of Toll-Like Receptors (TLR2, TLR4) Attenuates Pain and Potentiates Buprenorphine Analgesia in a Rat Neuropathic Pain Model. Neural Plasticity, 2016, 2016, 1-12.	2.2	77
5	Blockade of P2X4 Receptors Inhibits Neuropathic Pain-Related Behavior by Preventing MMP-9 Activation and, Consequently, Pronociceptive Interleukin Release in a Rat Model. Frontiers in Pharmacology, 2017, 8, 48.	3.5	69
6	Blockade of IL-18 signaling diminished neuropathic pain and enhanced the efficacy of morphine and buprenorphine. Molecular and Cellular Neurosciences, 2016, 71, 114-124.	2.2	65
7	Beneficial properties of maraviroc on neuropathic pain development and opioid effectiveness in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 64, 68-78.	4.8	60
8	Direct and indirect pharmacological modulation of CCL2/CCR2 pathway results in attenuation of neuropathic pain — In vivo and in vitro evidence. Journal of Neuroimmunology, 2016, 297, 9-19.	2.3	54
9	The RS504393 Influences the Level of Nociceptive Factors and Enhances Opioid Analgesic Potency in Neuropathic Rats. Journal of NeuroImmune Pharmacology, 2017, 12, 402-419.	4.1	52
10	Pharmacological kynurenine 3-monooxygenase enzyme inhibition significantly reduces neuropathic pain in a rat model. Neuropharmacology, 2016, 102, 80-91.	4.1	49
11	Involvement of Macrophage Inflammatory Protein-1 Family Members in the Development of Diabetic Neuropathy and Their Contribution to Effectiveness of Morphine. Frontiers in Immunology, 2018, 9, 494.	4.8	48
12	IL-1 receptor antagonist improves morphine and buprenorphine efficacy in a rat neuropathic pain model. European Journal of Pharmacology, 2015, 764, 240-248.	3.5	47
13	Chemokines CCL2 and CCL7, but not CCL12, play a significant role in the development of pain-related behavior and opioid-induced analgesia. Cytokine, 2019, 119, 202-213.	3.2	46
14	Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures. Frontiers in Cellular and Infection Microbiology, 2017, 7, 141.	3.9	44
15	PD98059 Influences Immune Factors and Enhances Opioid Analgesia in Model of Neuropathy. PLoS ONE, 2015, 10, e0138583.	2.5	44
16	Pharmacological Inhibition of Indoleamine 2,3-Dioxygenase-2 and Kynurenine 3-Monooxygenase, Enzymes of the Kynurenine Pathway, Significantly Diminishes Neuropathic Pain in a Rat Model. Frontiers in Pharmacology, 2018, 9, 724.	3.5	41
17	Microglial Inhibition Influences XCL1/XCR1 Expression and Causes Analgesic Effects in a Mouse Model of Diabetic Neuropathy. Anesthesiology, 2016, 125, 573-589.	2.5	37
18	Pharmacological blockade of CXCR3 by (±)-NBI-74330 reduces neuropathic pain and enhances opioid effectiveness - Evidence from in vivo and in vitro studies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3418-3437.	3.8	37

ANNA PIOTROWSKA

#	Article	IF	CITATIONS
19	Botulinum Toxin Type A—A Modulator of Spinal Neuron–Glia Interactions under Neuropathic Pain Conditions. Toxins, 2018, 10, 145.	3.4	35
20	Spinal CCL1/CCR8 signaling interplay as a potential therapeutic target – Evidence from a mouse diabetic neuropathy model. International Immunopharmacology, 2017, 52, 261-271.	3.8	31
21	Neuropathic Pain Dysregulates Gene Expression of the Forebrain Opioid and Dopamine Systems. Neurotoxicity Research, 2020, 37, 800-814.	2.7	29
22	Minocycline Enhances the Effectiveness of Nociceptin/Orphanin FQ during Neuropathic Pain. BioMed Research International, 2014, 2014, 1-12.	1.9	28
23	The blockade of CC chemokine receptor type 1 influences the level of nociceptive factors and enhances opioid analgesic potency in a rat model of neuropathic pain. Immunology, 2020, 159, 413-428.	4.4	28
24	Pharmacological Blockade of Spinal CXCL3/CXCR2 Signaling by NVP CXCR2 20, a Selective CXCR2 Antagonist, Reduces Neuropathic Pain Following Peripheral Nerve Injury. Frontiers in Immunology, 2019, 10, 2198.	4.8	27
25	Treatment with a carbon monoxide-releasing molecule (CORM-2) inhibits neuropathic pain and enhances opioid effectiveness in rats. Pharmacological Reports, 2016, 68, 206-213.	3.3	25
26	Biphalin, a Dimeric Enkephalin, Alleviates LPS-Induced Activation in Rat Primary Microglial Cultures in Opioid Receptor-Dependent and Receptor-Independent Manners. Neural Plasticity, 2017, 2017, 1-19.	2.2	24
27	Bidirectional Action of Cenicriviroc, a CCR2/CCR5 Antagonist, Results in Alleviation of Pain-Related Behaviors and Potentiation of Opioid Analgesia in Rats With Peripheral Neuropathy. Frontiers in Immunology, 2020, 11, 615327.	4.8	17
28	Novel hybrid compounds, opioid agonist+melanocortin 4 receptor antagonist, as efficient analgesics in mouse chronic constriction injury model of neuropathic pain. Neuropharmacology, 2020, 178, 108232.	4.1	14
29	Comparison of the Effects of Chemokine Receptors CXCR2 and CXCR3 Pharmacological Modulation in Neuropathic Pain Model—In Vivo and In Vitro Study. International Journal of Molecular Sciences, 2021, 22, 11074.	4.1	13
30	Zaprinast diminished pain and enhanced opioid analgesia in a rat neuropathic pain model. European Journal of Pharmacology, 2018, 839, 21-32.	3.5	12
31	Novel bifunctional hybrid compounds designed to enhance the effects of opioids and antagonize the pronociceptive effects of nonopioid peptides as potent analgesics in a rat model of neuropathic pain. Pain, 2021, 162, 432-445.	4.2	9
32	Metamizole relieves pain by influencing cytokine levels in dorsal root ganglia in a rat model of neuropathic pain. Pharmacological Reports, 2020, 72, 1310-1322.	3.3	8
33	Bifunctional Opioid/Melanocortin Peptidomimetics for Use in Neuropathic Pain: Variation in the Type and Length of the Linker Connecting the Two Pharmacophores. International Journal of Molecular Sciences, 2022, 23, 674.	4.1	5
34	Dataset of (±)-NBI-74330 (CXCR3 antagonist) influence on chemokines under neuropathic pain. Data in Brief, 2018, 21, 1145-1150.	1.0	2