Joseph Lotem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3396811/publications.pdf Version: 2024-02-01

LOSEDH LOTEM

#	Article	IF	CITATIONS
1	Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. Journal of Experimental Medicine, 2009, 206, 51-59.	8.5	409
2	Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7731-7736.	7.1	344
3	Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation. EMBO Journal, 2004, 23, 969-979.	7.8	269
4	Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mechanisms of Development, 2001, 109, 413-417.	1.7	177
5	Induction of specific changes in the surface membrane of myeloid leukemic cells by steroid hormones. International Journal of Cancer, 1975, 15, 731-740.	5.1	131
6	In vivo inhibition of the development of myeloid leukemia by injection of macrophage-and granulocyte-inducing protein. International Journal of Cancer, 1981, 28, 375-386.	5.1	115
7	Separation of different molecular forms of macrophage- and granulocyte-inducing proteins for normal and leukemic myeloid cells. International Journal of Cancer, 1980, 25, 763-771.	5.1	109
8	Cytokine control of developmental programs in normal hematopoiesis and leukemia. Oncogene, 2002, 21, 3284-3294.	5.9	109
9	Transcription Factor Runx3 Regulates Interleukin-15-Dependent Natural Killer Cell Activation. Molecular and Cellular Biology, 2014, 34, 1158-1169.	2.3	93
10	Runx3 at the interface of immunity, inflammation and cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 131-143.	7.4	69
11	Control of normal differentiation of myeloid leukemic cells. XII. Isolation of normal myeloid colony-forming cells from bone marrow and the sequence of differentiation to mature granulocytes in normal and D+ myeloid leukemic cells. Journal of Cellular Physiology, 1977, 92, 97-108.	4.1	68
12	Runx3-mediated Transcriptional Program in Cytotoxic Lymphocytes. PLoS ONE, 2013, 8, e80467.	2.5	60
13	Epigenetics wins over genetics: induction of differentiation in tumor cells. Seminars in Cancer Biology, 2002, 12, 339-346.	9.6	59
14	Coupling of growth and differentiation in normal myeloid precursors and the breakdown of this coupling in leukemia. International Journal of Cancer, 1983, 32, 127-134.	5.1	58
15	Control ofin vivo differentiation of myeloid leukemic cells. iv. inhibition of leukemia development by myeloid differentiation-inducing protein. International Journal of Cancer, 1984, 33, 147-154.	5.1	55
16	Runx3 in Immunity, Inflammation and Cancer. Advances in Experimental Medicine and Biology, 2017, 962, 369-393.	1.6	43
17	Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Molecular Medicine, 2011, 3, 593-604.	6.9	42
18	Genetic dissociation of different cellular effects of interferon on myeloid leukemic cells. International Journal of Cancer, 1978, 22, 214-220.	5.1	38

Joseph Lotem

#	Article	IF	CITATIONS
19	Control of normal differentiation of myeloid leukemic cells. VI. Inhibition of cell multiplication and the formation of macrophages. Journal of Cellular Physiology, 1975, 85, 587-594.	4.1	33
20	Haematopoietic growth factors. Nature, 1984, 312, 407-407.	27.8	32
21	Expression of AML1-d, a short human AML1 isoform, in embryonic stem cells suppresses in vivo tumor growth and differentiation. Cell Death and Differentiation, 1998, 5, 765-773.	11.2	28
22	Role of different normal hematopoietic regulatory proteins in the differentiation of myeloid leukemic cells. International Journal of Cancer, 1988, 41, 101-107.	5.1	24
23	Inhibition of p53-induced apoptosis without affecting expression of p53-regulated genes. Proceedings of the United States of America, 2003, 100, 6718-6723.	7.1	22
24	Control ofin vivo differentiation of myeloid leukemic cells. III. Regulation By T Lymphocytes And Inflammation. International Journal of Cancer, 1983, 32, 781-791.	5.1	19
25	Independent regulation of myeloid cell growth and differentiation inducing proteins:In vivo regulation by compounds that induce inflammation. International Journal of Cancer, 1985, 35, 93-100.	5.1	18
26	Human cancers overexpress genes that are specific to a variety of normal human tissues. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18556-18561.	7.1	18
27	Review of clinical and haematological response to lowâ€dose cytosine arabinoside in acute myeloid leukaemia. European Journal of Haematology, 1987, 38, 3-11.	2.2	16
28	Target-cell specificity of hematopoietic regulatory proteins for different clones of myeloid leukemic cells: Two regulators secreted by krebs carcinoma cells. International Journal of Cancer, 1988, 41, 622-628.	5.1	14
29	Runx3 prevents spontaneous colitis by directing the differentiation of anti-inflammatory mononuclear phagocytes. PLoS ONE, 2020, 15, e0233044.	2.5	13
30	Induction in myeloid leukemic cells of genes that are expressed in different normal tissues. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16022-16027.	7.1	11
31	Carcinogen-Induced Skin Tumor Development Requires Leukocytic Expression of the Transcription Factor Runx3. Cancer Prevention Research, 2014, 7, 913-926.	1.5	8
32	The False Paradigm of RUNX3 Function as Tumor Suppressor in Gastric Cancer. Journal of Cancer Therapy, 2013, 04, 16-25.	0.4	4
33	The Leo Sachs' legacy: a pioneer's journey through hematopoiesis. International Journal of Developmental Biology, 2017, 61, 127-136.	0.6	1
34	Regulation of Leukaemic Cells by Interleukin 6 and Leukaemia Inhibitory Factor. Novartis Foundation Symposium, 1992, 167, 80-99.	1.1	1
35	Leo Sachs. 14 October 1924—12 December 2013. Biographical Memoirs of Fellows of the Royal Society, 2019, 66, 355-375.	0.1	0