Daniela Marisol Salvatori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3396573/publications.pdf Version: 2024-02-01

		430442	414034
33	1,149	18	32
papers	citations	h-index	g-index
33	33	33	1174
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Novel functional foods from vegetable matrices impregnated with biologically active compounds. Journal of Food Engineering, 2005, 67, 205-214.	2.7	140
2	THE RESPONSE OF SOME PROPERTIES OF FRUITS TO VACUUM IMPREGNATION. Journal of Food Process Engineering, 1998, 21, 59-73.	1.5	103
3	Physical and Functional Properties of Blackberry Freeze- and Spray-Dried Powders. Drying Technology, 2014, 32, 197-207.	1.7	99
4	Changes in calcium level and mechanical properties of apple tissue due to impregnation with calcium salts. Food Research International, 2006, 39, 154-164.	2.9	84
5	Pulsed Light Treatment of Cut Apple: Dose Effect on Color, Structure, and Microbiological Stability. Food and Bioprocess Technology, 2012, 5, 2311-2322.	2.6	68
6	Osmotic dehydration progression in apple tissue I: spatial distribution of solutes and moisture content. Journal of Food Engineering, 1999, 42, 125-132.	2.7	61
7	Integral valorization of fruit waste from wine and cider industries. Journal of Cleaner Production, 2020, 242, 118486.	4.6	60
8	Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air- and freeze-drying. Food and Bioproducts Processing, 2016, 100, 156-171.	1.8	49
9	Spray-dried powders from berries extracts obtained upon several processing steps to improve the bioactive components content. Powder Technology, 2019, 342, 1008-1015.	2.1	49
10	Optimization of Pulsed Electric Field Treatment for the Extraction of Bioactive Compounds from Blackcurrant. Food and Bioprocess Technology, 2019, 12, 1102-1109.	2.6	44
11	Physico-Chemical and Mechanical Properties of Apple Disks Subjected to Osmotic Dehydration and Different Drying Methods. Food and Bioprocess Technology, 2012, 5, 1790-1802.	2.6	39
12	Fruit snacks from raspberries: influence of drying parameters on colour degradation and bioactive potential. International Journal of Food Science and Technology, 2017, 52, 313-328.	1.3	39
13	STRUCTURAL CHANGES AND MASS TRANSFER DURING GLUCOSE INFUSION OF APPLES AS AFFECTED BY BLANCHING AND PROCESS VARIABLES. Drying Technology, 2000, 18, 361-382.	1.7	38
14	Fluidized bed drying of blackberry wastes: Drying kinetics, particle characterization and nutritional value of the obtained granular solids. Powder Technology, 2021, 385, 37-49.	2.1	30
15	Physical and functional properties of spray-dried powders from blackcurrant juice and extracts obtained from the waste of juice processing. Food Science and Technology International, 2018, 24, 78-86.	1.1	29
16	SURVIVAL OF LISTERIA INNOCUA IN APPLE JUICE AS AFFECTED BY VANILLIN OR POTASSIUM SORBATE. Journal of Food Safety, 2004, 24, 1-15.	1.1	28
17	Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes. Biomass Conversion and Biorefinery, 2023, 13, 12509-12526.	2.9	24
18	Osmotic dehydration progression in apple tissue II: generalized equations for concentration prediction. Journal of Food Engineering, 1999, 42, 133-138.	2.7	22

#	Article	IF	CITATIONS
19	Glutenâ€free cookies added with fibre and bioactive compounds from blackcurrant residue. International Journal of Food Science and Technology, 2021, 56, 1734-1740.	1.3	20
20	Color and Bioactive Compounds Characteristics on Dehydrated Sweet Cherry Products. Food and Bioprocess Technology, 2015, 8, 1716-1729.	2.6	16
21	Potential bioactive ingredient from elderberry fruit: Process optimization for a maximum phenolic recovery, physicochemical characterization, and bioaccesibility. Journal of Berry Research, 2021, 11, 51-68.	0.7	15
22	Pretreatments Effect in Drying Behaviour and Colour of Mature and Immature â€~Napolitana' Sweet Cherries. Food and Bioprocess Technology, 2014, 7, 1640.	2.6	13
23	Osmotic Dehydrated Raspberries: Changes in Physical Aspects and Bioactive Compounds. Drying Technology, 2015, 33, 659-670.	1.7	13
24	Optimized aqueous extracts of maqui (Aristotelia chilensis) suitable for powder production. Journal of Food Science and Technology, 2019, 56, 3553-3560.	1.4	12
25	Nutraceutical tablets from maqui berry (<i>Aristotelia chilensis</i>) spray-dried powders with high antioxidant levels. Drying Technology, 2020, 38, 1231-1242.	1.7	12
26	Potential of UV-C Light for Preservation of Cut Apples Fortified with Calcium: Assessment of Optical and Rheological Properties and Native Flora Dynamics. Food and Bioprocess Technology, 2015, 8, 1890-1903.	2.6	9
27	Physicochemical, functional, and sensory characterization of apple leathers enriched with acáchul (Ardisia compressa Kunth) powder. LWT - Food Science and Technology, 2021, 146, 111472.	2.5	9
28	Colorant and antioxidant properties of freeze-dried extracts from wild berries: use of ultrasound-assisted extraction method and drivers of liking of colored yogurts. Journal of Food Science and Technology, 2022, 59, 944-955.	1.4	8
29	IMPACT OF CALCIUM ON VISCOELASTIC PROPERTIES OF FORTIFIED APPLE TISSUE. Journal of Food Process Engineering, 2011, 34, 1639-1660.	1.5	5
30	Monitoring mechanical, color and anthocyanin changes during rehydration of raspberry-based products. Journal of Berry Research, 2017, 7, 261-280.	0.7	3
31	Natural food colorant from blackcurrant sprayâ€dried powder obtained by enzymatic treatment: Characterization and acceptability. Journal of Food Processing and Preservation, 2021, 45, .	0.9	3
32	Particulate systems from maqui (Aristotelia chilensis) wastes to be used as nutraceutics or high value-added ingredients. Drying Technology, 0, , 1-16.	1.7	3
33	Valorization of postharvest sweet cherry discard for the development of dehydrated fruit ingredients: compositional, physical, and mechanical properties. Journal of the Science of Food and Agriculture, 2018, 98, 5450-5458.	1.7	2