
David Degler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3396539/publications.pdf Version: 2024-02-01

DAVID DECLER

#	Article	IF	CITATIONS
1	Ceramic Sensors for Industrial Applications. , 2021, , 125-138.		Ο
2	Investigations on the Temperature-Dependent Interaction of Water Vapor with Tin Dioxide and Its Implications on Gas Sensing. ACS Sensors, 2020, 5, 3207-3216.	7.8	30
3	TEXS: in-vacuum tender X-ray emission spectrometer with 11 Johansson crystal analyzers. Journal of Synchrotron Radiation, 2020, 27, 813-826.	2.4	19
4	Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials. ACS Sensors, 2019, 4, 2228-2249.	7.8	284
5	Microfluidically synthesized Au, Pd and AuPd nanoparticles supported on SnO2 for gas sensing applications. Sensors and Actuators B: Chemical, 2019, 292, 48-56.	7.8	53
6	Basics of semiconducting metal oxide–based gas sensors. , 2019, , 61-165.		17
7	Platinum loaded tin dioxide: a model system for unravelling the interplay between heterogeneous catalysis and gas sensing. Journal of Materials Chemistry A, 2018, 6, 2034-2046.	10.3	88
8	Exploiting Synergies in Catalysis and Gas Sensing using Noble Metal‣oaded Oxide Composites. ChemCatChem, 2018, 10, 864-880.	3.7	50
9	Rhodium Oxide Surface-Loaded Gas Sensors. Nanomaterials, 2018, 8, 892.	4.1	25
10	Trends and Advances in the Characterization of Gas Sensing Materials Based on Semiconducting Oxides. Sensors, 2018, 18, 3544.	3.8	30
11	Temperature-Dependent NO ₂ Sensing Mechanisms over Indium Oxide. ACS Sensors, 2017, 2, 1272-1277.	7.8	70
12	Gold-Loaded Tin Dioxide Gas Sensing Materials: Mechanistic Insights and the Role of Gold Dispersion. ACS Sensors, 2016, 1, 1322-1329.	7.8	67
13	Structure and chemistry of surface-doped Pt:SnO ₂ gas sensing materials. RSC Advances, 2016, 6, 28149-28155.	3.6	47
14	Extending the toolbox for gas sensor research: Operando UV/vis diffuse reflectance spectroscopy on SnO2-based gas sensors. Sensors and Actuators B: Chemical, 2016, 224, 256-259.	7.8	44
15	Structure–function relationships of conventionally and flame made Pd-doped sensors studied by X-ray absorption spectroscopy and DC-resistance. Sensors and Actuators B: Chemical, 2015, 219, 315-323.	7.8	21
16	Identifying the Active Oxygen Species in SnO ₂ Based Gas Sensing Materials: An Operando IR Spectrsocopy Study. Journal of Physical Chemistry C, 2015, 119, 11792-11799.	3.1	95