Dean P Jones

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3396332/dean-p-jones-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34,865 87 175 447 h-index g-index citations papers 6.2 40,163 482 7.93 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
447	High-resolution metabolomics of exposure to tobacco smoke during pregnancy and adverse birth outcomes in the Atlanta African American maternal-child cohort. <i>Environmental Pollution</i> , 2022 , 292, 118361	9.3	3
446	Child serum metabolome and traffic-related air pollution exposure in pregnancy. <i>Environmental Research</i> , 2022 , 203, 111907	7.9	2
445	Metabolic effects of the schizophrenia-associated 3q29 deletion <i>Translational Psychiatry</i> , 2022 , 12, 66	8.6	O
444	Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology <i>Nature Reviews Molecular Cell Biology</i> , 2022 ,	48.7	42
443	Integrative interactomics applied to bovine fescue toxicosis Scientific Reports, 2022, 12, 4899	4.9	O
442	Non-targeted metabolomics and associations with per- and polyfluoroalkyl substances (PFAS) exposure in humans: A scoping review <i>Environment International</i> , 2022 , 162, 107159	12.9	2
441	Plasma concentrations of lipophilic persistent organic pollutants and glucose homeostasis in youth populations <i>Environmental Research</i> , 2022 , 212, 113296	7.9	1
440	Multiomics Analysis of Structural Magnetic Resonance Imaging of the Brain and Cerebrospinal Fluid Metabolomics in Cognitively Normal and Impaired Adults <i>Frontiers in Aging Neuroscience</i> , 2021 , 13, 796	5 ∮ ₹7	O
439	Microbial metabolite delta-valerobetaine is a diet-dependent obesogen <i>Nature Metabolism</i> , 2021 , 3, 1694-1705	14.6	7
438	Assessment of metabolic perturbations associated with exposure to phthalates among pregnant African American women. <i>Science of the Total Environment</i> , 2021 , 151689	10.2	O
437	High-Resolution Exposomics and Metabolomics Reveals Specific Associations in Cholestatic Liver Diseases. <i>Hepatology Communications</i> , 2021 ,	6	1
436	Lung metabolome of 1,3-butadiene exposed Collaborative Cross mice reflects metabolic phenotype of human lung cancer. <i>Toxicology</i> , 2021 , 463, 152987	4.4	2
435	Per- and polyfluoroalkyl substance (PFAS) exposure, maternal metabolomic perturbation, and fetal growth in African American women: A meet-in-the-middle approach. <i>Environment International</i> , 2021 , 158, 106964	12.9	8
434	Integrated molecular response of exposure to traffic-related pollutants in the US trucking industry. <i>Environment International</i> , 2021 , 158, 106957	12.9	1
433	High-Resolution Metabolomic Assessment of Pesticide Exposure in Central Valley, California. <i>Chemical Research in Toxicology</i> , 2021 , 34, 1337-1347	4	2
432	Firsthand and Secondhand Exposure Levels of Maltol-Flavored Electronic Nicotine Delivery System Vapors Disrupt Amino Acid Metabolism. <i>Toxicological Sciences</i> , 2021 , 182, 70-81	4.4	1
431	Metabolomics analysis of maternal serum exposed to high air pollution during pregnancy and risk of autism spectrum disorder in offspring. <i>Environmental Research</i> , 2021 , 196, 110823	7.9	1

(2021-2021)

430	Metabolomic Profiling Demonstrates Postprandial Changes in Fatty Acids and Glycerophospholipids Are Associated with Fasting Inflammation in Guatemalan Adults. <i>Journal of Nutrition</i> , 2021 , 151, 2564-2573	4.1	2
429	AMPK-deficiency forces metformin-challenged cancer cells to switch from carbohydrate metabolism to ketogenesis to support energy metabolism. <i>Oncogene</i> , 2021 , 40, 5455-5467	9.2	4
428	Plasma high-resolution metabolomics identifies linoleic acid and linked metabolic pathways associated with bone mineral density. <i>Clinical Nutrition</i> , 2021 , 40, 467-475	5.9	6
427	Environmental chemicals and metabolic disruption in primary and secondary human parathyroid tumors. <i>Surgery</i> , 2021 , 169, 102-108	3.6	1
426	Application of high-resolution metabolomics to identify biological pathways perturbed by traffic-related air pollution. <i>Environmental Research</i> , 2021 , 193, 110506	7.9	16
425	Distribution of phytochelatins, metal-binding compounds, in plant foods: A survey of commonly consumed fruits, vegetables, grains and legumes. <i>Food Chemistry</i> , 2021 , 339, 128051	8.5	5
424	Metabolome-wide association study of occupational exposure to benzene. <i>Carcinogenesis</i> , 2021 , 42, 1	32 థ. 133	362
423	Cruciferous vegetables () confer cytoprotective effects in intestines. <i>Gut Microbes</i> , 2021 , 13, 1-6	8.8	1
422	Metabolome-wide association study of flavorant vanillin exposure in bronchial epithelial cells reveals disease-related perturbations in metabolism. <i>Environment International</i> , 2021 , 147, 106323	12.9	5
421	Genetic or Toxicant-Induced Disruption of Vesicular Monoamine Storage and Global Metabolic Profiling in Caenorhabditis elegans. <i>Toxicological Sciences</i> , 2021 , 180, 313-324	4.4	2
420	Plant food intake is associated with lower cadmium body burden in middle-aged adults. <i>European Journal of Nutrition</i> , 2021 , 60, 3365-3374	5.2	O
419	Plasma high-resolution metabolomic phenotyping of lean mass in a United States adult cohort. <i>Journal of Parenteral and Enteral Nutrition</i> , 2021 , 45, 1635-1644	4.2	O
418	Plasma Metabolic Phenotypes of HPV-Associated versus Smoking-Associated Head and Neck Cancer and Patient Survival. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2021 , 30, 1858-1866	4	
417	A scalable workflow to characterize the human exposome. <i>Nature Communications</i> , 2021 , 12, 5575	17.4	6
416	TCA cycle remodeling drives proinflammatory signaling in humans with pulmonary tuberculosis. <i>PLoS Pathogens</i> , 2021 , 17, e1009941	7.6	1
415	Infant Metabolome in Relation to Prenatal DHA Supplementation and Maternal Single-Nucleotide Polymorphism rs174602: Secondary Analysis of a Randomized Controlled Trial in Mexico. <i>Journal of Nutrition</i> , 2021 , 151, 3339-3349	4.1	1
414	Exposure to Perfluoroalkyl Substances and Glucose Homeostasis in Youth. <i>Environmental Health Perspectives</i> , 2021 , 129, 97002	8.4	3
413	Large scale enzyme based xenobiotic identification for exposomics. <i>Nature Communications</i> , 2021 , 12, 5418	17.4	4

412	Metabolomics as a Truly Translational Tool for Precision Medicine. <i>International Journal of Toxicology</i> , 2021 , 40, 413-426	2.4	4
411	Periconception air pollution, metabolomic biomarkers, and fertility among women undergoing assisted reproduction. <i>Environment International</i> , 2021 , 155, 106666	12.9	8
410	An atlas of metallome and metabolome interactions and associations with incident diabetes in the Strong Heart Family Study. <i>Environment International</i> , 2021 , 157, 106810	12.9	3
409	Clinical recovery of Macaca fascicularis infected with Plasmodium knowlesi <i>Malaria Journal</i> , 2021 , 20, 486	3.6	1
408	Differences in plasma metabolites related to Alzheimer@ disease, \$\mathbb{I}\$ status, and ethnicity. Alzheimer\mathbb{s} and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12025	6	2
407	Oxidative Stress Is Associated With Diastolic Dysfunction in Women With Ischemia With No Obstructive Coronary Artery Disease. <i>Journal of the American Heart Association</i> , 2020 , 9, e015602	6	5
406	Reference Standardization for Quantification and Harmonization of Large-Scale Metabolomics. <i>Analytical Chemistry</i> , 2020 , 92, 8836-8844	7.8	44
405	Untargeted Metabolomics Screen of Mid-pregnancy Maternal Serum and Autism in Offspring. <i>Autism Research</i> , 2020 , 13, 1258-1269	5.1	5
404	N8-Acetylspermidine: A Polyamine Biomarker in Ischemic Cardiomyopathy With Reduced Ejection Fraction. <i>Journal of the American Heart Association</i> , 2020 , 9, e016055	6	4
403	Early Pregnancy Serum Metabolite Profiles Associated with Hypertensive Disorders of Pregnancy in African American Women: A Pilot Study. <i>Journal of Pregnancy</i> , 2020 , 2020, 1515321	2.5	4
402	A vision for exposome epidemiology: The pregnancy exposome in relation to breast cancer in the Child Health and Development Studies. <i>Reproductive Toxicology</i> , 2020 , 92, 4-10	3.4	2
401	Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. <i>Nature Reviews Molecular Cell Biology</i> , 2020 , 21, 363-383	48.7	905
400	Macronutrient, Energy, and Bile Acid Metabolism Pathways Altered Following a Physiological Meal Challenge, Relative to Fasting, among Guatemalan Adults. <i>Journal of Nutrition</i> , 2020 , 150, 2031-2040	4.1	1
399	Metabolites and metabolic pathways associated with glucocorticoid resistance in pregnant African-American women. <i>Comprehensive Psychoneuroendocrinology</i> , 2020 , 1-2, 100001-100001	1.1	3
398	Reductive Stress Causes Pathological Cardiac Remodeling and Diastolic Dysfunction. <i>Antioxidants and Redox Signaling</i> , 2020 , 32, 1293-1312	8.4	11
397	Toxic tall fescue grazing increases susceptibility of the Angus steer fecal microbiota and plasma/urine metabolome to environmental effects. <i>Scientific Reports</i> , 2020 , 10, 2497	4.9	6
396	Reprint of "Metabolome Wide Association Study of Serum Poly and Perfluoroalkyl Substances (PFASs) in Pregnancy and Early Postpartum". <i>Reproductive Toxicology</i> , 2020 , 92, 120-128	3.4	3
395	Gut-Resident Lactobacilli Activate Hepatic Nrf2 and Protect Against Oxidative Liver Injury. <i>Cell Metabolism</i> , 2020 , 31, 956-968.e5	24.6	54

(2020-2020)

394	Tryptophan catabolism reflects disease activity in human tuberculosis. JCI Insight, 2020, 5,	9.9	19
393	Metabolomic Profiling After a Meal Shows Greater Changes and Lower Metabolic Flexibility in Cardiometabolic Diseases. <i>Journal of the Endocrine Society</i> , 2020 , 4, bvaa127	0.4	3
392	Plasma acylcarnitine levels increase with healthy aging. <i>Aging</i> , 2020 , 12, 13555-13570	5.6	6
391	Unsupervised dimensionality reduction for exposome research. <i>Current Opinion in Environmental Science and Health</i> , 2020 , 15, 32-38	8.1	8
390	The Redox Theory of Development. Antioxidants and Redox Signaling, 2020, 32, 715-740	8.4	18
389	Omics Integration for Mitochondria Systems Biology. Antioxidants and Redox Signaling, 2020, 32, 853-8	72 8.4	10
388	High-resolution metabolomic profiling of Alzheimer@ disease in plasma. <i>Annals of Clinical and Translational Neurology</i> , 2020 , 7, 36-45	5.3	24
387	Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: An untargeted metabolomics approach. <i>Environment International</i> , 2020 , 134, 105220	12.9	48
386	Tryptophan metabolism is differently regulated between large and small dogs. <i>GeroScience</i> , 2020 , 42, 881-896	8.9	7
385	Mechanisms integrating lifelong exposure and health 2020 , 405-426		
384	Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. <i>Environment International</i> , 2020 , 145, 106091	12.9	27
384		12.9 6.7	27
,	glucose metabolism in young adults. <i>Environment International</i> , 2020 , 145, 106091		
383	glucose metabolism in young adults. <i>Environment International</i> , 2020 , 145, 106091 Metabolomic Associations with Serum Bone Turnover Markers. <i>Nutrients</i> , 2020 , 12, Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach. <i>Environment</i>	6.7	4
383	glucose metabolism in young adults. <i>Environment International</i> , 2020 , 145, 106091 Metabolomic Associations with Serum Bone Turnover Markers. <i>Nutrients</i> , 2020 , 12, Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach. <i>Environment International</i> , 2020 , 143, 105957 Metabolomics Analysis of Aspirin@Effects in Human Colon Tissue and Associations with Adenoma	6.7	11
383 382 381	Metabolomic Associations with Serum Bone Turnover Markers. <i>Nutrients</i> , 2020, 12, Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach. <i>Environment International</i> , 2020, 143, 105957 Metabolomics Analysis of Aspirin@Effects in Human Colon Tissue and Associations with Adenoma Risk. <i>Cancer Prevention Research</i> , 2020, 13, 863-876 Sampling interstitial fluid from human skin using a microneedle patch. <i>Science Translational</i>	6.7	11
383 382 381 380	Metabolomic Associations with Serum Bone Turnover Markers. <i>Nutrients</i> , 2020 , 12, Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach. <i>Environment International</i> , 2020 , 143, 105957 Metabolomics Analysis of Aspirin@ Effects in Human Colon Tissue and Associations with Adenoma Risk. <i>Cancer Prevention Research</i> , 2020 , 13, 863-876 Sampling interstitial fluid from human skin using a microneedle patch. <i>Science Translational Medicine</i> , 2020 , 12, Air Pollution and Adverse Pregnancy and Birth Outcomes: Mediation Analysis Using Metabolomic	6.7 12.9 3.2 17.5	4 11 1 49

376	Untargeted metabolomics reveal dysregulations in sugar, methionine, and tyrosine pathways in the prodromal state of AD. <i>Alzheimerh</i> and <i>Dementia: Diagnosis, Assessment and Disease Monitoring</i> , 2020 , 12, e12064	5.2	7
375	Physical Fitness but Not Diet Quality Distinguishes Lean and Normal Weight Obese Adults. <i>Journal of the Academy of Nutrition and Dietetics</i> , 2020 , 120, 1963-1973.e2	3.9	5
374	Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing. <i>Scientific Reports</i> , 2020 , 10, 13856	4.9	9
373	Untargeted high-resolution plasma metabolomic profiling predicts outcomes in patients with coronary artery disease. <i>PLoS ONE</i> , 2020 , 15, e0237579	3.7	8
372	Metabolome Wide Association Study of serum DDT and DDE in Pregnancy and Early Postpartum. <i>Reproductive Toxicology</i> , 2020 , 92, 129-137	3.4	13
371	Role of heat shock protein and cytokine expression as markers of clinical outcomes with glutamine-supplemented parenteral nutrition in surgical ICU patients. <i>Clinical Nutrition</i> , 2020 , 39, 563-5	57 ⁵³⁹	2
370	Regulating colonic dendritic cells by commensal glycosylated large surface layer protein A to sustain gut homeostasis against pathogenic inflammation. <i>Mucosal Immunology</i> , 2020 , 13, 34-46	9.2	5
369	Understanding mixed environmental exposures using metabolomics via a hierarchical community network model in a cohort of California women in 1960Q. <i>Reproductive Toxicology</i> , 2020 , 92, 57-65	3.4	14
368	A precision medicine approach to defining the impact of doxorubicin on the bioenergetic-metabolite interactome in human platelets. <i>Redox Biology</i> , 2020 , 28, 101311	11.3	5
367	Reductive stress impairs myogenic differentiation. <i>Redox Biology</i> , 2020 , 34, 101492	11.3	18
366	Metabolic perturbations in classic galactosemia beyond the Leloir pathway: Insights from an untargeted metabolomic study. <i>Journal of Inherited Metabolic Disease</i> , 2019 , 42, 254-263	5.4	5
365	Metabolomic Responses to Manganese Dose in SH-SY5Y Human Neuroblastoma Cells. <i>Toxicological Sciences</i> , 2019 , 169, 84-94	4.4	7
364	Metabolome Wide Association Study of Serum Poly and Perfluoroalkyl Substances (PFASs) in Pregnancy and Early Postpartum. <i>Reproductive Toxicology</i> , 2019 , 87, 70-78	3.4	11
363	Cyclic O exposure synergizes with aging leading to memory impairment in male APOE B, but not APOE B, targeted replacement mice. <i>Neurobiology of Aging</i> , 2019 , 81, 9-21	5.6	8
362	Metabolomics of childhood exposure to perfluoroalkyl substances: a cross-sectional study. Metabolomics, 2019 , 15, 95	4.7	28
361	Maternal serum metabolome and traffic-related air pollution exposure in pregnancy. <i>Environment International</i> , 2019 , 130, 104872	12.9	37
360	Response of Beef Cattle Fecal Microbiota to Grazing on Toxic Tall Fescue. <i>Applied and Environmental Microbiology</i> , 2019 , 85,	4.8	10
359	Environmental Cadmium Enhances Lung Injury by Respiratory Syncytial Virus Infection. <i>American Journal of Pathology</i> , 2019 , 189, 1513-1525	5.8	12

Enhanced Keap1-Nrf2 signaling protects the myocardium from isoproterenol-induced pathological remodeling in mice. <i>Redox Biology</i> , 2019 , 27, 101212	11.3	32
Low-dose cadmium potentiates lung inflammatory response to 2009 pandemic H1N1 influenza virus in mice. <i>Environment International</i> , 2019 , 127, 720-729	12.9	13
Alterations in immune and renal biomarkers among workers occupationally exposed to low levels of trichloroethylene below current regulatory standards. <i>Occupational and Environmental Medicine</i> , 2019 , 76, 376-381	2.1	4
The Metabolome: a Key Measure for Exposome Research in Epidemiology. <i>Current Epidemiology Reports</i> , 2019 , 6, 93-103	2.9	29
Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis. <i>Environment International</i> , 2019 , 126, 445-453	12.9	54
Mitochondria in precision medicine; linking bioenergetics and metabolomics in platelets. <i>Redox Biology</i> , 2019 , 22, 101165	11.3	19
A biplot correlation range for group-wise metabolite selection in mass spectrometry. <i>BioData Mining</i> , 2019 , 12, 4	4.3	1
Perturbations of the arginine metabolome following exposures to traffic-related air pollution in a panel of commuters with and without asthma. <i>Environment International</i> , 2019 , 127, 503-513	12.9	48
Networks at the nexus of systems biology and the exposome. <i>Current Opinion in Toxicology</i> , 2019 , 16, 25-31	4.4	9
Redox Systems Biology of Nutrition and Oxidative Stress. <i>Journal of Nutrition</i> , 2019 , 149, 553-565	4.1	27
The Effects of Graded Levels of Calorie Restriction: XIII. Global Metabolomics Screen Reveals Graded Changes in Circulating Amino Acids, Vitamins, and Bile Acids in the Plasma of C57BL/6 Mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2019 , 74, 16-26	6.4	6
The Exposome: Molecules to Populations. Annual Review of Pharmacology and Toxicology, 2019 , 59, 107	-17.3	92
Distinct amino acid and lipid perturbations characterize acute versus chronic malaria. <i>JCI Insight</i> , 2019 , 4,	9.9	23
Development of a Plasma Screening Panel for Pediatric Nonalcoholic Fatty Liver Disease Using Metabolomics. <i>Hepatology Communications</i> , 2019 , 3, 1311-1321	6	17
Transcriptome Analysis Reveals Distinct Responses to Physiologic Toxic Manganese Exposure in Human Neuroblastoma Cells. <i>Frontiers in Genetics</i> , 2019 , 10, 676	4.5	9
Arginine and Carnitine Metabolites Are Altered in Diabetic Retinopathy 2019 , 60, 3119-3126		27
A non-lethal malarial infection results in reduced drug metabolizing enzyme expression and drug clearance in mice. <i>Malaria Journal</i> , 2019 , 18, 234	3.6	4
Phytochelatin database: a resource for phytochelatin complexes of nutritional and environmental metals. <i>Database: the Journal of Biological Databases and Curation</i> , 2019 , 2019,	5	10
	Low-dose cadmium potentiates lung inflammatory response to 2009 pandemic H1N1 influenza virus in mice. <i>Environment International</i> , 2019, 127, 720-729 Alterations in immune and renal biomarkers among workers occupationally exposed to low levels of trichloroethylene below current regulatory standards. <i>Occupational and Environmental Medicine</i> , 2019, 76, 376-381 The Metabolome: a Key Measure for Exposome Research in Epidemiology. <i>Current Epidemiology Reports</i> , 2019, 6, 93-103 Perfluoroalky substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis. <i>Environment International</i> , 2019, 126, 445-453 Mitochondria in precision medicine; linking bioenergetics and metabolomics in platelets. <i>Redox Biology</i> , 2019, 22, 101165 A biplot correlation range for group-wise metabolite selection in mass spectrometry. <i>BioData Mining</i> , 2019, 12, 2 Perturbations of the arginine metabolome following exposures to traffic-related air pollution in a panel of commuters with and without asthma. <i>Environment International</i> , 2019, 127, 503-513 Networks at the nexus of systems biology and the exposome. <i>Current Opinion in Toxicology</i> , 2019, 16, 25-31 Redox Systems Biology of Nutrition and Oxidative Stress. <i>Journal of Nutrition</i> , 2019, 149, 553-565 The Effects of Graded Levels of Calorie Restriction: XIII. Global Metabolomics Screen Reveals Graded Changes in Circulating Amino Acids, Vitamins, and Bile Acids in the Plasma of CS7BL/6 Mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2019, 74, 16-26 The Exposome: Molecules to Populations. <i>Annual Review of Pharmacology and Toxicology</i> , 2019, 59, 107 Distinct amino acid and lipid perturbations characterize acute versus chronic malaria. <i>JCI Insight</i> , 2019, 4, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19	Low-dose cadmium potentiates lung inflammatory response to 2009 pandemic H1N1 influenza virus in mice. <i>Environment International</i> , 2019, 127, 720-729 Alterations in immune and renal biomarkers among workers occupationally exposed to low levels of trichloroethylene below current regulatory standards. <i>Occupational and Environmental Medicine</i> , 2.1 The Metabolome: a Key Measure for Exposome Research in Epidemiology. <i>Current Epidemiology Reports</i> , 2019, 6, 93-103 Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis. <i>Environment International</i> , 2019, 126, 445-453 Mitochondria in precision medicine; linking bioenergetics and metabolomics in platelets. <i>Redox Biology</i> , 2019, 22, 101165 A biplot correlation range for group-wise metabolite selection in mass spectrometry. <i>BioData Mining</i> , 2019, 12, 4 Perturbations of the arginine metabolome following exposures to traffic-related air pollution in a panel of commuters with and without asthma. <i>Environment International</i> , 2019, 127, 503-513 Networks at the nexus of systems biology and the exposome. <i>Current Opinion in Toxicology</i> , 2019, 16, 25-31 Redox Systems Biology of Nutrition and Oxidative Stress. <i>Journal of Nutrition</i> , 2019, 149, 553-565 4.1 The Effects of Graded Levels of Calorie Restriction: XIII. Global Metabolomics Screen Reveals Graded Changes in Circulating Amino Acids, Vitamins, and Bile Acids in the Plasma of CS7BL/6 Mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2019, 74, 16-26 The Exposome: Molecules to Populations. <i>Annual Review of Pharmacology and Toxicology</i> , 2019, 59, 107-12-3 Distinct amino acid and lipid perturbations characterize acute versus chronic malaria. <i>JCI Insight</i> , 2019, 4, Development of a Plasma Screening Panel for Pediatric Nonalcoholic Fatty Liver Disease Using Metabolomics. <i>Hepatology Communications</i> , 2019, 3, 1311-13121 Transcriptome Analysis Reveals Distinct Responses t

340	Plasma High-Resolution Metabolomics Differentiates Adults with Normal Weight Obesity from Lean Individuals. <i>Obesity</i> , 2019 , 27, 1729-1737	8	20
339	The metabolome: A key measure for exposome research in epidemiology. <i>Current Epidemiology Reports</i> , 2019 , 6, 93-103	2.9	12
338	Chronic Reductive Stress Impairs Endoplasmic Reticulum Function and Cause Proteotoxic Cardiac Disease. <i>FASEB Journal</i> , 2019 , 33, 532.18	0.9	
337	Discovery of metabolic alterations in the serum of patients infected with Plasmodium spp. by high-resolution metabolomics. <i>Metabolomics</i> , 2019 , 16, 9	4.7	5
336	Targeting soluble tumor necrosis factor as a potential intervention to lower risk for late-onset Alzheimer@ disease associated with obesity, metabolic syndrome, and type 2 diabetes. <i>Alzheimerls Research and Therapy</i> , 2019 , 12, 1	9	39
335	Multigenerational metabolic profiling in the Michigan PBB registry. <i>Environmental Research</i> , 2019 , 172, 182-193	7.9	9
334	Analysis of Postdeployment Serum Samples Identifies Potential Biomarkers of Exposure to Burn Pits and Other Environmental Hazards. <i>Journal of Occupational and Environmental Medicine</i> , 2019 , 61 Suppl 12, S45-S54	2	2
333	Metabolomics of Aerobic Exercise in Chronic Stroke Survivors: A Pilot Study. <i>Journal of Stroke and Cerebrovascular Diseases</i> , 2019 , 28, 104453	2.8	5
332	Environmental Chemicals Altered in Association With Deployment for High Risk Areas. <i>Journal of Occupational and Environmental Medicine</i> , 2019 , 61 Suppl 12, S15-S24	2	3
331	Advances in Comprehensive Exposure Assessment: Opportunities for the US Military. <i>Journal of Occupational and Environmental Medicine</i> , 2019 , 61 Suppl 12, S5-S14	2	3
330	Metabolome-Wide Association Study of Deployment to Balad, Iraq or Bagram, Afghanistan. <i>Journal of Occupational and Environmental Medicine</i> , 2019 , 61 Suppl 12, S25-S34	2	5
329	Associations of Benzo(ghi)perylene and Heptachlorodibenzo-p-dioxin in Serum of Service Personnel Deployed to Balad, Iraq, and Bagram, Afghanistan Correlates With Perturbed Amino Acid Metabolism in Human Lung Fibroblasts. <i>Journal of Occupational and Environmental Medicine</i> , 2019 ,	2	4
328	Benzo[a]pyrene Perturbs Mitochondrial and Amino Acid Metabolism in Lung Epithelial Cells and Has Similar Correlations With Metabolic Changes in Human Serum. <i>Journal of Occupational and Environmental Medicine</i> , 2019 , 61 Suppl 12, S73-S81	2	7
327	The metabolome as a biomarker of mortality risk in the common marmoset. <i>American Journal of Primatology</i> , 2019 , 81, e22944	2.5	4
326	Symptom Science Research in the Era of Big Data: Leveraging Interdisciplinary Resources and Partners to Make It Happen. <i>Journal of Nursing Scholarship</i> , 2019 , 51, 4-8	3.6	3
325	Proteomic analysis of microbial induced redox-dependent intestinal signaling. <i>Redox Biology</i> , 2019 , 20, 526-532	11.3	14
324	Neonatal intestinal immune regulation by the commensal bacterium, P. UF1. <i>Mucosal Immunology</i> , 2019 , 12, 434-444	9.2	12
323	Low-dose cadmium disrupts mitochondrial citric acid cycle and lipid metabolism in mouse lung. <i>Free Radical Biology and Medicine</i> , 2019 , 131, 209-217	7.8	26

322	Metabolome-wide association study of anti-epileptic drug treatment during pregnancy. <i>Toxicology and Applied Pharmacology</i> , 2019 , 363, 122-130	4.6	23
321	Metabolomic assessment of exposure to near-highway ultrafine particles. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2019 , 29, 469-483	6.7	46
320	The Mitochondrial Exposome 2018 , 613-637		
319	Higher Mediterranean Diet Quality Scores and Lower Body Mass Index Are Associated with a Less-Oxidized Plasma Glutathione and Cysteine Redox Status in Adults. <i>Journal of Nutrition</i> , 2018 , 148, 245-253	4.1	15
318	Central Mitochondrial Signaling Mechanisms in Response to Environmental Agents 2018 , 639-654		1
317	Putrescine as indicator of manganese neurotoxicity: Dose-response study in human SH-SY5Y cells. <i>Food and Chemical Toxicology</i> , 2018 , 116, 272-280	4.7	9
316	Integrative metabolomics and transcriptomics signatures of clinical tolerance to Plasmodium vivax reveal activation of innate cell immunity and T cell signaling. <i>Redox Biology</i> , 2018 , 17, 158-170	11.3	43
315	Selenium supplementation prevents metabolic and transcriptomic responses to cadmium in mouse lung. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2018 , 1862, 2417-2426	4	13
314	Human Suction Blister Fluid Composition Determined Using High-Resolution Metabolomics. <i>Analytical Chemistry</i> , 2018 , 90, 3786-3792	7.8	39
313	Mitochondrial network responses in oxidative physiology and disease. <i>Free Radical Biology and Medicine</i> , 2018 , 116, 31-40	7.8	31
312	Selenium Supplementation Alters Hepatic Energy and Fatty Acid Metabolism in Mice. <i>Journal of Nutrition</i> , 2018 , 148, 675-684	4.1	30
311	Untargeted metabolomics reveals multiple metabolites influencing smoking-related DNA methylation. <i>Epigenomics</i> , 2018 , 10, 379-393	4.4	16
310	xMWAS: a data-driven integration and differential network analysis tool. <i>Bioinformatics</i> , 2018 , 34, 701-7	0722	77
309	Oxidative stress predicts cognitive decline with aging in healthy adults: an observational study. Journal of Neuroinflammation, 2018 , 15, 17	10.1	61
308	Determination of thiocyanate in exhaled breath condensate. <i>Free Radical Biology and Medicine</i> , 2018 , 126, 334-340	7.8	7
307	Use of high-resolution metabolomics for the identification of metabolic signals associated with traffic-related air pollution. <i>Environment International</i> , 2018 , 120, 145-154	12.9	67
306	Selenium at the redox interface of the genome, metabolome and exposome. <i>Free Radical Biology and Medicine</i> , 2018 , 127, 215-227	7.8	27
305	High-resolution plasma metabolomics analysis to detect Mycobacterium tuberculosis-associated metabolites that distinguish active pulmonary tuberculosis in humans. <i>PLoS ONE</i> , 2018 , 13, e0205398	3.7	24

304	The Carnitine Shuttle Pathway is Altered in Patients With Neovascular Age-Related Macular Degeneration 2018 , 59, 4978-4985		21
303	Particulate metal exposures induce plasma metabolome changes in a commuter panel study. <i>PLoS ONE</i> , 2018 , 13, e0203468	3.7	28
302	Myeloperoxidase oxidation of methionine associates with early cystic fibrosis lung disease. <i>European Respiratory Journal</i> , 2018 , 52,	13.6	20
301	Pilot randomized controlled trial of a Mediterranean diet or diet supplemented with fish oil, walnuts, and grape juice in overweight or obese US adults. <i>BMC Nutrition</i> , 2018 , 4, 26	2.5	9
300	Redox Equivalents and Mitochondrial Bioenergetics. <i>Methods in Molecular Biology</i> , 2018 , 1782, 197-227	1.4	3
299	Plasma metabolomics in adults with cystic fibrosis during a pulmonary exacerbation: A pilot randomized study of high-dose vitamin D administration. <i>Metabolism: Clinical and Experimental</i> , 2017 , 70, 31-41	12.7	30
298	Redox dynamics of manganese as a mitochondrial life-death switch. <i>Biochemical and Biophysical Research Communications</i> , 2017 , 482, 388-398	3.4	75
297	Metabolomics of fescue toxicosis in grazing beef steers. Food and Chemical Toxicology, 2017, 105, 285-2	29 97	11
296	Metabolic Phenotypes of Response to Vaccination in Humans. <i>Cell</i> , 2017 , 169, 862-877.e17	56.2	157
295	Oxidative Stress. Annual Review of Biochemistry, 2017 , 86, 715-748	29.1	1332
295 294	Oxidative Stress. <i>Annual Review of Biochemistry</i> , 2017 , 86, 715-748 Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis. <i>Toxicology</i> , 2017 , 383, 50-56		1332
294	Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis. <i>Toxicology</i> , 2017 , 383, 50-56 xMSannotator: An R Package for Network-Based Annotation of High-Resolution Metabolomics	64.4	25
294	Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis. <i>Toxicology</i> , 2017 , 383, 50-56 xMSannotator: An R Package for Network-Based Annotation of High-Resolution Metabolomics Data. <i>Analytical Chemistry</i> , 2017 , 89, 1063-1067 Plasma metabolomics reveals membrane lipids, aspartate/asparagine and nucleotide metabolism pathway differences associated with chloroquine resistance in Plasmodium vivax malaria. <i>PLoS ONE</i>	7.8	25 155
294293292	Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis. <i>Toxicology</i> , 2017 , 383, 50-56 xMSannotator: An R Package for Network-Based Annotation of High-Resolution Metabolomics Data. <i>Analytical Chemistry</i> , 2017 , 89, 1063-1067 Plasma metabolomics reveals membrane lipids, aspartate/asparagine and nucleotide metabolism pathway differences associated with chloroquine resistance in Plasmodium vivax malaria. <i>PLoS ONE</i> , 2017 , 12, e0182819 Metabolomic profiles of plasma, exhaled breath condensate, and saliva are correlated with	7.8 3.7	25 155 17
294293292291	Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis. <i>Toxicology</i> , 2017 , 383, 50-56 xMSannotator: An R Package for Network-Based Annotation of High-Resolution Metabolomics Data. <i>Analytical Chemistry</i> , 2017 , 89, 1063-1067 Plasma metabolomics reveals membrane lipids, aspartate/asparagine and nucleotide metabolism pathway differences associated with chloroquine resistance in Plasmodium vivax malaria. <i>PLoS ONE</i> , 2017 , 12, e0182819 Metabolomic profiles of plasma, exhaled breath condensate, and saliva are correlated with potential for air toxics detection. <i>Journal of Breath Research</i> , 2017 , 12, 016008 Metabolome-wide association study of peripheral parasitemia in Plasmodium vivax malaria.	7.8 3.7 3.1	25 155 17 24
294293292291290	Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis. <i>Toxicology</i> , 2017 , 383, 50-56 xMSannotator: An R Package for Network-Based Annotation of High-Resolution Metabolomics Data. <i>Analytical Chemistry</i> , 2017 , 89, 1063-1067 Plasma metabolomics reveals membrane lipids, aspartate/asparagine and nucleotide metabolism pathway differences associated with chloroquine resistance in Plasmodium vivax malaria. <i>PLoS ONE</i> , 2017 , 12, e0182819 Metabolomic profiles of plasma, exhaled breath condensate, and saliva are correlated with potential for air toxics detection. <i>Journal of Breath Research</i> , 2017 , 12, 016008 Metabolome-wide association study of peripheral parasitemia in Plasmodium vivax malaria. <i>International Journal of Medical Microbiology</i> , 2017 , 307, 533-541	54.4 7.8 3.7 3.1	25 155 17 24 22

(2016-2017)

286	From the Cover: Manganese Stimulates Mitochondrial H2O2 Production in SH-SY5Y Human Neuroblastoma Cells Over Physiologic as well as Toxicologic Range. <i>Toxicological Sciences</i> , 2017 , 155, 213-223	4.4	29
285	Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. <i>Brain, Behavior, and Immunity</i> , 2017 , 59, 158-172	16.6	53
284	High-resolution metabolomics to identify urine biomarkers in corticosteroid-resistant asthmatic children. <i>Journal of Allergy and Clinical Immunology</i> , 2017 , 139, 1518-1524.e4	11.5	29
283	Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation. <i>Journal of Clinical Investigation</i> , 2017 , 127, 3970-3986	15.9	42
282	Computational Metabolomics: A Framework for the Million Metabolome. <i>Chemical Research in Toxicology</i> , 2016 , 29, 1956-1975	4	130
281	Nuclear Thioredoxin-1 Overexpression Attenuates Alcohol-Mediated Nrf2 Signaling and Lung Fibrosis. <i>Alcoholism: Clinical and Experimental Research</i> , 2016 , 40, 1846-56	3.7	9
280	Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. <i>Science Translational Medicine</i> , 2016 , 8, 357ra122	17.5	106
279	The Exposome: A New Frontier for Education. <i>American Biology Teacher</i> , 2016 , 78, 542-548	0.3	12
278	High-Resolution Metabolomics for Nutrition and Health Assessment of Armed Forces Personnel. Journal of Occupational and Environmental Medicine, 2016 , 58, S80-8	2	32
277	Metabolic Pathways and Networks Associated With Tobacco Use in Military Personnel. <i>Journal of Occupational and Environmental Medicine</i> , 2016 , 58, S111-6	2	21
276	Deployment-Associated Exposure Surveillance With High-Resolution Metabolomics. <i>Journal of Occupational and Environmental Medicine</i> , 2016 , 58, S12-21	2	30
275	Pilot Metabolome-Wide Association Study of Benzo(a)pyrene in Serum From Military Personnel. Journal of Occupational and Environmental Medicine, 2016 , 58, S44-52	2	26
274	High-Resolution Metabolomics Assessment of Military Personnel: Evaluating Analytical Strategies for Chemical Detection. <i>Journal of Occupational and Environmental Medicine</i> , 2016 , 58, S53-61	2	39
273	Introduction to Department of Defense Research on Burn Pits, Biomarkers, and Health Outcomes Related to Deployment in Iraq and Afghanistan. <i>Journal of Occupational and Environmental Medicine</i> , 2016 , 58, S3-S11	2	19
272	Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection. <i>Microbiome</i> , 2016 , 4, 3	16.6	62
271	Response to Letter Regarding Article "Novel Biomarker of Oxidative Stress Is Associated With Risk of Death in Patients With Coronary Artery Disease". <i>Circulation</i> , 2016 , 133, e667	16.7	4
270	Macronutrient intake and body composition changes during anti-tuberculosis therapy in adults. <i>Clinical Nutrition</i> , 2016 , 35, 205-212	5.9	9
269	Effect of Angiotensin II Type I Receptor Blockade with Valsartan on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo (EFFERVESCENT). American Heart Journal, 2016 , 174, 68-79	4.9	13

268	Sequencing the exposome: A call to action. <i>Toxicology Reports</i> , 2016 , 3, 29-45	4.8	78
267	Amino Acid Metabolism is Altered in Adolescents with Nonalcoholic Fatty Liver Disease-An Untargeted, High Resolution Metabolomics Study. <i>Journal of Pediatrics</i> , 2016 , 172, 14-19.e5	3.6	53
266	Novel Biomarker of Oxidative Stress Is Associated With Risk of Death in Patients With Coronary Artery Disease. <i>Circulation</i> , 2016 , 133, 361-9	16.7	95
265	Metabolomics and Mycobacterial Disease: Don@Forget the Bioinformatics. <i>Annals of the American Thoracic Society</i> , 2016 , 13, 141-2	4.7	3
264	High-Resolution Metabolomics: Review of the Field and Implications for Nursing Science and the Study of Preterm Birth. <i>Biological Research for Nursing</i> , 2016 , 18, 12-22	2.6	20
263	Plasma Metabolomics of Common Marmosets (Callithrix jacchus) to Evaluate Diet and Feeding Husbandry. <i>Journal of the American Association for Laboratory Animal Science</i> , 2016 , 55, 137-46	1.3	2
262	Population Screening for Biological and Environmental Properties of the Human Metabolic Phenotype 2016 , 167-211		18
261	Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study. <i>PLoS ONE</i> , 2016 , 11, e0159548	3.7	12
260	Efficacy and Safety of Glutamine-supplemented Parenteral Nutrition in Surgical ICU Patients: An American Multicenter Randomized Controlled Trial. <i>Annals of Surgery</i> , 2016 , 263, 646-55	7.8	40
259	Exposure Memory and Lung Regeneration. <i>Annals of the American Thoracic Society</i> , 2016 , 13 Suppl 2, S452-S461	4.7	6
258	Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2016 , 311, R906-R916	3.2	61
257	Low-dose oral cadmium increases airway reactivity and lung neuronal gene expression in mice. <i>Physiological Reports</i> , 2016 , 4, e12821	2.6	21
256	Hydrogen peroxide and central redox theory for aerobic life: A tribute to Helmut Sies: Scout, trailblazer, and redox pioneer. <i>Archives of Biochemistry and Biophysics</i> , 2016 , 595, 13-8	4.1	6
255	A longitudinal analysis of the effects of age on the blood plasma metabolome in the common marmoset, Callithrix jacchus. <i>Experimental Gerontology</i> , 2016 , 76, 17-24	4.5	20
254	High-resolution metabolomics of occupational exposure to trichloroethylene. <i>International Journal of Epidemiology</i> , 2016 , 45, 1517-1527	7.8	68
253	Differential effects of nebivolol and metoprolol on arterial stiffness, circulating progenitor cells, and oxidative stress. <i>Journal of the American Society of Hypertension</i> , 2015 , 9, 206-13		14
252	The Redox Code. Antioxidants and Redox Signaling, 2015, 23, 734-46	8.4	354
251	High-resolution metabolomics to discover potential parasite-specific biomarkers in a Plasmodium falciparum erythrocytic stage culture system. <i>Malaria Journal</i> , 2015 , 14, 122	3.6	37

(2015-2015)

250	Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. <i>Nature Communications</i> , 2015 , 6, 6656	17.4	241
249	The cysteine proteome. <i>Free Radical Biology and Medicine</i> , 2015 , 84, 227-245	7.8	217
248	Redox theory of aging. <i>Redox Biology</i> , 2015 , 5, 71-79	11.3	121
247	Low-Dose Cadmium Causes Metabolic and Genetic Dysregulation Associated With Fatty Liver Disease in Mice. <i>Toxicological Sciences</i> , 2015 , 147, 524-34	4.4	75
246	Reference Standardization for Mass Spectrometry and High-resolution Metabolomics Applications to Exposome Research. <i>Toxicological Sciences</i> , 2015 , 148, 531-43	4.4	123
245	Disturbed flow induces systemic changes in metabolites in mouse plasma: a metabolomics study using ApoE?/? mice with partial carotid ligation. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2015 , 308, R62-72	3.2	35
244	The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila. <i>Aging Cell</i> , 2015 , 14, 797-808	9.9	50
243	Local false discovery rate estimation using feature reliability in LC/MS metabolomics data. <i>Scientific Reports</i> , 2015 , 5, 17221	4.9	17
242	Renin-Angiotensin Activation and Oxidative Stress in Early Heart Failure with Preserved Ejection Fraction. <i>BioMed Research International</i> , 2015 , 2015, 825027	3	12
241	MetabNet: An R Package for Metabolic Association Analysis of High-Resolution Metabolomics Data. <i>Frontiers in Bioengineering and Biotechnology</i> , 2015 , 3, 87	5.8	38
240	Metabolic Consequences of Chronic Alcohol Abuse in Non-Smokers: A Pilot Study. <i>PLoS ONE</i> , 2015 , 10, e0129570	3.7	8
239	Metabolome-Wide Association Study of Primary Open Angle Glaucoma 2015 , 56, 5020-8		41
238	Metabolome-wide association study of phenylalanine in plasma of common marmosets. <i>Amino Acids</i> , 2015 , 47, 589-601	3.5	36
237	Cerebrospinal fluid concentrations of N-acetylcysteine after oral administration in Parkinson@ disease. <i>Parkinsonism and Related Disorders</i> , 2015 , 21, 500-3	3.6	45
236	Anticancer therapeutic potential of Mn porphyrin/ascorbate system. <i>Free Radical Biology and Medicine</i> , 2015 , 89, 1231-47	7.8	48
235	Glutathione and Thiols. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, 131-147		
234	Biomarkers of oxidative stress study VI. Endogenous plasma antioxidants fail as useful biomarkers of endotoxin-induced oxidative stress. <i>Free Radical Biology and Medicine</i> , 2015 , 81, 100-6	7.8	24
233	Metabolic Characterization of the Common Marmoset (Callithrix jacchus). <i>PLoS ONE</i> , 2015 , 10, e014291	63.7	20

232	Oxidative stress is associated with increased pulmonary artery systolic pressure in humans. <i>Hypertension</i> , 2014 , 63, 1270-5	8.5	34
231	Age-related alterations of plasma glutathione and oxidation of redox potentials in chimpanzee (Pan troglodytes) and rhesus monkey (Macaca mulatta). <i>Age</i> , 2014 , 36, 719-32		5
230	Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of cd toxicity. <i>Toxicological Sciences</i> , 2014 , 139, 59-73	4.4	76
229	Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. <i>Science</i> , 2014 , 343, 313-317	33.3	154
228	Short-term oral atrazine exposure alters the plasma metabolome of male C57BL/6 mice and disrupts Elinolenate, tryptophan, tyrosine and other major metabolic pathways. <i>Toxicology</i> , 2014 , 326, 130-41	4.4	26
227	Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. <i>Aging Cell</i> , 2014 , 13, 596-604	9.9	86
226	Mitochondrial metabolomics using high-resolution Fourier-transform mass spectrometry. <i>Methods in Molecular Biology</i> , 2014 , 1198, 43-73	1.4	34
225	Manganese-based superoxide dismutase mimics modify both acute and long-term outcome severity in a Drosophila melanogaster model of classic galactosemia. <i>Antioxidants and Redox Signaling</i> , 2014 , 20, 2361-71	8.4	22
224	The nature of nurture: refining the definition of the exposome. <i>Toxicological Sciences</i> , 2014 , 137, 1-2	4.4	248
223	Transcriptome-metabolome wide association study (TMWAS) of maneb and paraquat neurotoxicity reveals network level interactions in toxicologic mechanism. <i>Toxicology Reports</i> , 2014 , 1, 435-444	4.8	42
222	Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach. <i>Bioinformatics</i> , 2014 , 30, 2941-8	7.2	36
221	Metabolomics of bronchoalveolar lavage differentiate healthy HIV-1-infected subjects from controls. <i>AIDS Research and Human Retroviruses</i> , 2014 , 30, 579-85	1.6	50
220	Reply: To PMID 24369802. Journal of Allergy and Clinical Immunology, 2014, 133, 1499-500	11.5	
219	Children with severe asthma have unique oxidative stress-associated metabolomic profiles. <i>Journal of Allergy and Clinical Immunology</i> , 2014 , 133, 258-61.e1-8	11.5	67
218	Thiol-reactivity of the fungicide maneb. <i>Redox Biology</i> , 2014 , 2, 651-5	11.3	18
217	Redox biology: interface of the exposome with the proteome, epigenome and genome. <i>Redox Biology</i> , 2014 , 2, 358-60	11.3	48
216	Metabolomics of ADSOL (AS-1) red blood cell storage. <i>Transfusion Medicine Reviews</i> , 2014 , 28, 41-55	7.4	68
215	Metabolomics in the fight against malaria. <i>Memorias Do Instituto Oswaldo Cruz</i> , 2014 , 109, 589-97	2.6	27

(2013-2014)

214	Comparative transcriptomics and metabolomics in a rhesus macaque drug administration study. <i>Frontiers in Cell and Developmental Biology</i> , 2014 , 2, 54	5.7	12
213	Invariance and plasticity in the Drosophila melanogaster metabolomic network in response to temperature. <i>BMC Systems Biology</i> , 2014 , 8, 139	3.5	16
212	Vitamin D status is independently associated with plasma glutathione and cysteine thiol/disulphide redox status in adults. <i>Clinical Endocrinology</i> , 2014 , 81, 458-66	3.4	50
211	Redox pioneer: professor Helmut Sies. <i>Antioxidants and Redox Signaling</i> , 2014 , 21, 2459-68	8.4	16
210	Autophagy is essential for effector CD8(+) T cell survival and memory formation. <i>Nature Immunology</i> , 2014 , 15, 1152-61	19.1	271
209	Disturbed flow enhances inflammatory signaling and atherogenesis by increasing thioredoxin-1 level in endothelial cell nuclei. <i>PLoS ONE</i> , 2014 , 9, e108346	3.7	21
208	Plasma metabolomics in human pulmonary tuberculosis disease: a pilot study. <i>PLoS ONE</i> , 2014 , 9, e108	85 <i>4</i> 7	98
207	xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. <i>BMC Bioinformatics</i> , 2013 , 14, 15	3.6	201
206	A microfluidic systems biology approach for live single-cell mitochondrial ROS imaging. <i>Methods in Enzymology</i> , 2013 , 526, 219-30	1.7	6
205	High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome. <i>Metabolomics</i> , 2013 , 9, S132-S143	4.7	127
204	Alcohol induces mitochondrial redox imbalance in alveolar macrophages. <i>Free Radical Biology and Medicine</i> , 2013 , 65, 1427-1434	7.8	27
203	Characterization of plasma thiol redox potential in a common marmoset model of aging. <i>Redox Biology</i> , 2013 , 1, 387-93	11.3	20
202	Thiol/disulfide redox states in signaling and sensing. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2013 , 48, 173-81	8.7	168
201	Hybrid feature detection and information accumulation using high-resolution LC-MS metabolomics data. <i>Journal of Proteome Research</i> , 2013 , 12, 1419-27	5.6	62
200	Selective targeting of the cysteine proteome by thioredoxin and glutathione redox systems. <i>Molecular and Cellular Proteomics</i> , 2013 , 12, 3285-96	7.6	62
199	Actin cytoskeleton redox proteome oxidation by cadmium. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2013 , 305, L831-43	5.8	38
198	Predicting network activity from high throughput metabolomics. <i>PLoS Computational Biology</i> , 2013 , 9, e1003123	5	431
197	Increased nuclear thioredoxin-1 potentiates cadmium-induced cytotoxicity. <i>Toxicological Sciences</i> , 2013 , 131, 84-94	4.4	30

196	The redox proteome. Journal of Biological Chemistry, 2013, 288, 26512-20	5.4	174
195	Metabolomic analysis reveals extended metabolic consequences of marginal vitamin B-6 deficiency in healthy human subjects. <i>PLoS ONE</i> , 2013 , 8, e63544	3.7	41
194	Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia. <i>DMM Disease Models and Mechanisms</i> , 2013 , 6, 84-94	4.1	49
193	Multifractal analysis for nutritional assessment. <i>PLoS ONE</i> , 2013 , 8, e69000	3.7	5
192	Metabolome-wide association study of neovascular age-related macular degeneration. <i>PLoS ONE</i> , 2013 , 8, e72737	3.7	78
191	Serum metabolomics of slow vs. rapid motor progression Parkinson@ disease: a pilot study. <i>PLoS ONE</i> , 2013 , 8, e77629	3.7	87
190	Environmental Toxicology: Oxidative Stress 2013 , 293-318		
189	Sulfur amino acid-free diet results in increased glutamate in human midbrain: a pilot magnetic resonance spectroscopic study. <i>Nutrition</i> , 2012 , 28, 235-41	4.8	4
188	High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring. <i>Toxicology</i> , 2012 , 295, 47-55	4.4	70
187	Determination of ebselen-sensitive reactive oxygen metabolites (ebROM) in human serum based upon N,NQdiethyl-1,4-phenylenediamine oxidation. <i>Clinica Chimica Acta</i> , 2012 , 414, 1-6	6.2	5
186	Nutritional metabolomics: progress in addressing complexity in diet and health. <i>Annual Review of Nutrition</i> , 2012 , 32, 183-202	9.9	188
185	Differential regulation of tissue thiol-disulfide redox status in a murine model of peritonitis. <i>Journal of Inflammation</i> , 2012 , 9, 36	6.7	6
184	Drug-Induced Liver Injury 2012 , 417-461		7
183	Detailed mitochondrial phenotyping by high resolution metabolomics. <i>PLoS ONE</i> , 2012 , 7, e33020	3.7	40
182	Redox equivalents and mitochondrial bioenergetics. <i>Methods in Molecular Biology</i> , 2012 , 810, 249-80	1.4	7
181	Absence of SOD1 leads to oxidative stress in peripheral nerve and causes a progressive distal motor axonopathy. <i>Experimental Neurology</i> , 2012 , 233, 163-71	5.7	63
180	Regulation of prostate cancer cell invasion by modulation of extra- and intracellular redox balance. <i>Free Radical Biology and Medicine</i> , 2012 , 52, 452-61	7.8	27
179	Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities. <i>Antioxidants and Redox Signaling</i> , 2012 , 17, 375-408	8.4	60

(2011-2012)

and Emory Team up to Eliminate Health Disparities (META-Health) study. <i>Metabolic Syndrome and Related Disorders</i> , 2012 , 10, 252-9	2.6	51
Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. Journal of Immunology, 2012 , 189, 1911-9	5.3	87
Thiol redox disturbances in children with severe asthma arelassociated with posttranslational modification of the transcription factor nuclear factor (erythroid-derived 2)-like 2. <i>Journal of Allergy and Clinical Immunology</i> , 2011 , 127, 1604-11	11.5	49
Oxidative stress is associated with impaired arterial elasticity. <i>Atherosclerosis</i> , 2011 , 218, 90-5	3.1	93
The role of plasma aminothiols in the prediction of coronary microvascular dysfunction and plaque vulnerability. <i>Atherosclerosis</i> , 2011 , 219, 266-72	3.1	29
Hepatic oxidative stress in fructose-induced fatty liver is not caused by sulfur amino acid insufficiency. <i>Nutrients</i> , 2011 , 3, 987-1002	6.7	17
Metabolic effects of albumin therapy in acute lung injury measured by proton nuclear magnetic resonance spectroscopy of plasma: a pilot study. <i>Critical Care Medicine</i> , 2011 , 39, 2308-13	1.4	6
Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. <i>Nutrition</i> , 2011 , 27, 199-205	4.8	57
Cysteine/cystine redox signaling in cardiovascular disease. <i>Free Radical Biology and Medicine</i> , 2011 , 50, 495-509	7.8	272
Clinical trials of antioxidants as cancer prevention agents: past, present, and future. <i>Free Radical Biology and Medicine</i> , 2011 , 51, 1068-84	7.8	167
Biomarkers of Oxidative Stress Study IV: ozone exposure of rats and its effect on antioxidants in plasma and bronchoalveolar lavage fluid. <i>Free Radical Biology and Medicine</i> , 2011 , 51, 1636-42	7.8	24
Mapping the cysteine proteome: analysis of redox-sensing thiols. <i>Current Opinion in Chemical Biology</i> , 2011 , 15, 103-12	9.7	64
Substitution of standard soybean oil with olive oil-based lipid emulsion in parenteral nutrition: comparison of vascular, metabolic, and inflammatory effects. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2011 , 96, 3207-16	5.6	43
Maneb and paraquat-mediated neurotoxicity: involvement of peroxiredoxin/thioredoxin system. <i>Toxicological Sciences</i> , 2011 , 121, 368-75	4.4	45
A sulfur amino acid-free meal increases plasma lipids in humans. <i>Journal of Nutrition</i> , 2011 , 141, 1424-37	14.1	9
Increased inflammatory signaling and lethality of influenza H1N1 by nuclear thioredoxin-1. <i>PLoS ONE</i> , 2011 , 6, e18918	3.7	25
Protein Cysteines Map to Functional Networks According to Steady-state Level of Oxidation. Journal of Proteomics and Bioinformatics, 2011 , 4, 196-209	2.1	35
Overexpression of thioredoxin 2 does not affect hypoxia-induced right ventricular hypertrophy. <i>FASEB Journal</i> , 2011 , 25, 1034.21	0.9	
	and Emory Team up to Eliminate Health Disparities (META-Health) study. Metabolic Syndrome and Related Disorders, 2012, 10, 252-9 Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. Journal of Immunology, 2012, 189, 1911-9 Thiol redox disturbances in children with severe asthma are according to the transcription factor nuclear factor (erythroid-derived 2)-like 2. Journal of Allergy and Clinical Immunology, 2011, 127, 1604-11 Oxidative stress is associated with impaired arterial elasticity. Atherosclerosis, 2011, 218, 90-5 The role of plasma aminothiols in the prediction of coronary microvascular dysfunction and plaque vulnerability. Atherosclerosis, 2011, 219, 266-72 Hepatic oxidative stress in fructose-induced fatty liver is not caused by sulfur amino acid insufficiency. Nutrients, 2011, 3, 987-1002 Metabolic effects of albumin therapy in acute lung injury measured by proton nuclear magnetic resonance spectroscopy of plasma: a pilot study. Critical Care Medicine, 2011, 39, 2308-13 Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Nutrition, 2011, 27, 199-205 Cysteine/cystine redox signalling in cardiovascular disease. Free Radical Biology and Medicine, 2011, 50, 495-509 Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radical Biology and Medicine, 2011, 51, 1068-84 Biomarkers of Oxidative Stress Study IV: ozone exposure of rats and its effect on antioxidants in plasma and bronchoalveolar lavage fluid. Free Radical Biology and Medicine, 2011, 51, 1636-42 Mapping the cysteine proteome: analysis of redox-sensing thiols. Current Opinion in Chemical Biology, 2011, 15, 103-12 Substitution of standard soybean oil with olive oil-based lipid emulsion in parenteral nutrition: comparison of vascular, metabolic, and inflammatory effects. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 3207-16 Maneb and paraquat-mediated neurotoxicity: involvement of peroxiredoxin/thio	and Emory Team up to Eliminate Health Disparities (META-Health) study. Metabolic Syndrome and Related Disorders, 2012, 10, 252-9 Liporalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. Journal of Immunology, 2012, 189, 1911-9 Thiol redox disturbances in children with severe asthma areflassociated with posttranslational modification of the transcription factor nuclear factor (erythroid-derived 2)-like 2. Journal of Allergy and Clinical Immunology, 2011, 127, 1604-11 Oxidative stress is associated with impaired arterial elasticity. Atherosclerosis, 2011, 218, 90-5 Jan The role of plasma aminothiols in the prediction of coronary microvascular dysfunction and plaque vulnerability. Atherosclerosis, 2011, 219, 266-72 Hepatic oxidative stress in fructose-induced fatty liver is not caused by sulfur amino acid insufficiency. Natirense, 2011, 3, 987-1002 Metabolic effects of albumin therapy in acute lung injury measured by proton nuclear magnetic resonance spectroscopy of plasma: a pilot study. Critical Care Medicine, 2011, 39, 2308-13 Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Natrition, 2011, 27, 199-205 Cysteine/cystine redox signaling in cardiovascular disease. Free Radical Biology and Medicine, 2011, 78 Biomarkers of Oxidative Stress Study IV: ozone exposure of rats and lits effect on antioxidants in plasma and bronchoalveolar lavage fluid. Free Radical Biology and Medicine, 2011, 51, 1068-84 Biomarkers of Oxidative Stress Study IV: ozone exposure of rats and its effect on antioxidants in plasma and bronchoalveolar lavage fluid. Free Radical Biology and Medicine, 2011, 51, 1636-42 Mapping the cysteine proteome: analysis of redox-sensing thiols. Current Opinion in Chemical Biology, 2011, 15, 103-12 Substitution of standard soybean oil with olive oil-based lipid emulsion in parenteral nutrition: comparison of vascular, metabolic, and inflammatory effects. Journal of Clinical Endocrinology and Medicine, 2011, 141, 14

Extracellular communication and signaling by thiol/disulfide redox states. FASEB Journal, **2011**, 25, 196.10.9

Oxidation of plasma cysteine/cystine and GSH/GSSG redox potentials by acetaminophen and sulfur anino acid insufficiency in humans. <i>Journal of Pharmacology and Experimental Therapeubics</i> , 2010, 333, 939-47 Postprandial cysteine/cystine redox potential in human plasma varies with meal content of sulfur amino acids. <i>Journal of Nutrition</i> , 2010, 140, 760-5 Acetaminophen elimination half-life in humans is unaffected by short-term consumption of sulfur amino acid-free diet. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2010, 333, 948-53 47 Anetwork perspective on metabolism and aging. <i>Integrative and Comparative Biology</i> , 2010, 50, 844-54 Effect of bone marrow-derived mesenchymal stem cells on endotoxin-induced oxidation of plasma cysteine and glutathione in mice. <i>Stem Cells International</i> , 2010, 2010, 868076 Characterization of apical and basal thiol-disulfide redox regulation in human colonic epithelial cells. <i>American Journal of Physiology - Renal Physiology</i> , 2010, 299, GS23-30 Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: results from a randomized, controlled clinical trial. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2010, 19, 850-8 Redox clamp model for study of extracellular thiols and disulfides in redox signaling. <i>Methods in Enzymology</i> , 2010, 474, 165-79 Redox sensing: orthogonal control in cell cycle and apoptosis signalling. <i>Journal of Internal Medicine</i> , 2010, 268, 432-48 49 Amodel of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. <i>Antioxidants and Redox Signaling</i> , 2010, 13, 731-43 148 Redox control systems in the nucleus: mechanisms and functions. <i>Antioxidants and Redox Signaling</i> , 2010, 13, 731-43 149 Apractical approach to detect unique metabolic patterns for personalized medicine. <i>Analyst, The</i> , 2010, 13, 286-4-70 2010, 135, 286-4-70 Akey role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. <i>Free Radical Biology and M</i>				
amino acid insufficiency in humans. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 393-47 Postprandial cysteine/cystine redox potential in human plasma varies with meal content of sulfur amino acids. Journal of Nutrition, 2010, 140, 760-5 Acetaminophen elimination half-life in humans is unaffected by short-term consumption of sulfur amino acids. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 948-53 47 Acetaminophen elimination half-life in humans is unaffected by short-term consumption of sulfur amino acid-free diet. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 948-53 47 Anetwork perspective on metabolism and aging. Integrative and Comparative Biology, 2010, 50, 844-54 Effect of bone marrow-derived mesenchymal stem cells on endotoxin-induced oxidation of plasma cysteine and glutathione in mice. Stem Cells International, 2010, 2010, 868076 52 Characterization of apical and basal thiol-disulfide redox regulation in human colonic epithelial cells. American Journal of Physiology - Renal Physiology, 2010, 299, G523-30 Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: results from a randomized, controlled clinical trial. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 850-8 Redox clamp model for study of extracellular thiols and disulfides in redox signaling. Methods in Enzymology, 2010, 474, 165-79 159 Redox camp model for study of extracellular thiols and disulfides in redox signaling. Methods in 27 Redox sensing: orthogonal control in cell cycle and apoptosis signalling. Journal of Internal Medicine 2010, 268, 432-48 149 Amodel of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxidants and Redox Signaling, 2010, 13, 731-43 148 Redox control systems in the nucleus: mechanisms and functions. Antioxidants and Redox Signaling, 2010, 13, 731-43 149 Arpactical approach to detect unique metabolic patterns for personalized medicine.				70
Acetaminophen elimination half-life in humans is unaffected by short-term consumption of sulfur amino acid-free diet. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 948-53 A network perspective on metabolism and aging. Integrative and Comparative Biology, 2010, 50, 844-54 Effect of bone marrow-derived mesenchymal stem cells on endotoxin-induced oxidation of plasma cysteine and glutathione in mice. Stem Cells International, 2010, 2010, 868076 Characterization of apical and basal thiol-disulfide redox regulation in human colonic epithelial cells. American Journal of Physiology - Renal Physiology, 2010, 299, 6523-30 Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: results from a randomized, controlled clinical trial. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 850-8 Redox clamp model for study of extracellular thiols and disulfides in redox signaling. Methods in Enzymology, 2010, 474, 165-79 Redox sensing: orthogonal control in cell cycle and apoptosis signalling. Journal of Internal Medicine, 2010, 268, 432-48 Amodel of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxidants and Redox Signaling, 2010, 13, 731-43 Amodel of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxidants and Redox Signaling, 2010, 13, 731-43 A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxidants and Redox Signaling, 2010, 13, 781-43 A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, The, 2010, 135, 2864-70 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 A key role for mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NIMR Spectra: An Application in Assessing	.58	amino acid insufficiency in humans. Journal of Pharmacology and Experimental Therapeutics, 2010 ,	4.7	28
amino acid-free diet. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 948-53 A network perspective on metabolism and aging. Integrative and Comparative Biology, 2010, 50, 844-54 Effect of bone marrow-derived mesenchymal stem cells on endotoxin-induced oxidation of plasma cysteine and glutathione in mice. Stem Cells International, 2010, 2010, 868076 Characterization of apical and basal thiol-disulfide redox regulation in human colonic epithelial cells. American Journal of Physiology - Renal Physiology, 2010, 299, G523-30 Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: results from a randomized, controlled clinical trial. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 850-8 Redox clamp model for study of extracellular thiols and disulfides in redox signaling. Methods in Enzymology, 2010, 474, 165-79 Redox sensing: orthogonal control in cell cycle and apoptosis signalling. Journal of Internal Medicine 2010, 268, 432-48 A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxidants and Redox Signaling, 2010, 13, 731-43 Redox control systems in the nucleus: mechanisms and functions. Antioxidants and Redox Signaling, 2010, 13, 489-509 A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, The, 2010, 135, 2864-70 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radical Biology and Medicine, 2010, 48, 1618-25 Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90			4.1	24
Effect of bone marrow-derived mesenchymal stem cells on endotoxin-induced oxidation of plasma cysteine and glutathione in mice. Stem Cells International, 2010, 2010, 868076 Characterization of apical and basal thiol-disulfide redox regulation in human colonic epithelial cells. American Journal of Physiology - Renal Physiology, 2010, 299, G523-30 Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: results from a randomized, controlled clinical trial. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 850-8 Redox clamp model for study of extracellular thiols and disulfides in redox signaling. Methods in Enzymology, 2010, 474, 165-79 Redox sensing: orthogonal control in cell cycle and apoptosis signalling. Journal of Internal Medicine ,2010, 268, 432-48 A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxidants and Redox Signaling, 2010, 13, 731-43 Redox control systems in the nucleus: mechanisms and functions. Antioxidants and Redox Signaling, 2010, 13, 489-509 A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, The, 2010, 135, 2864-70 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radical Biology and Medicine, 2010, 48, 1618-25 Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data	- 6	·	4.7	12
cysteine and glutathione in mice. Stem Cells International, 2010, 2010, 868076 Characterization of apical and basal thiol-disulfide redox regulation in human colonic epithelial cells. American Journal of Physiology - Renal Physiology, 2010, 299, G523-30 Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: results from a randomized, controlled clinical trial. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 850-8 Redox clamp model for study of extracellular thiols and disulfides in redox signaling. Methods in Enzymology, 2010, 474, 165-79 Redox sensing: orthogonal control in cell cycle and apoptosis signalling. Journal of Internal Medicine , 2010, 268, 432-48 A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxidants and Redox Signaling, 2010, 13, 731-43 Redox control systems in the nucleus: mechanisms and functions. Antioxidants and Redox Signaling, 2010, 13, 489-509 A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, The, 2010, 135, 2864-70 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radical Biology and Medicine, 2010, 48, 1618-25 Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data	-55	A network perspective on metabolism and aging. Integrative and Comparative Biology, 2010, 50, 844-54	2.8	83
cells. American Journal of Physiology - Renal Physiology, 2010, 299, G523-30 Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: results from a randomized, controlled clinical trial. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 850-8 Redox clamp model for study of extracellular thiols and disulfides in redox signaling. Methods in Enzymology, 2010, 474, 165-79 Redox sensing: orthogonal control in cell cycle and apoptosis signalling. Journal of Internal Medicine, 2010, 268, 432-48 A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxidants and Redox Signaling, 2010, 13, 731-43 Redox control systems in the nucleus: mechanisms and functions. Antioxidants and Redox Signaling, 2010, 13, 489-509 A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, The, 2010, 135, 2864-70 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 A Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data			5	35
adenoma patients: results from a randomized, controlled clinical trial. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 850-8 Redox clamp model for study of extracellular thiols and disulfides in redox signaling. Methods in Enzymology, 2010, 474, 165-79 Redox sensing: orthogonal control in cell cycle and apoptosis signalling. Journal of Internal Medicine , 2010, 268, 432-48 A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxidants and Redox Signaling, 2010, 13, 731-43 Redox control systems in the nucleus: mechanisms and functions. Antioxidants and Redox Signaling, 2010, 13, 489-509 A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, The, 2010, 135, 2864-70 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 Coxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radical Biology and Medicine, 2010, 48, 1618-25 A Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data	- -	· · · · · · · · · · · · · · · · · · ·	5.1	17
Redox sensing: orthogonal control in cell cycle and apoptosis signalling. Journal of Internal Medicine , 2010, 268, 432-48 A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxidants and Redox Signaling, 2010, 13, 731-43 Redox control systems in the nucleus: mechanisms and functions. Antioxidants and Redox Signaling, 2010, 13, 489-509 A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, The, 2010, 135, 2864-70 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radical Biology and Medicine, 2010, 48, 1618-25 Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data	.52	adenoma patients: results from a randomized, controlled clinical trial. Cancer Epidemiology	4	47
A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxidants and Redox Signaling, 2010, 13, 731-43 Redox control systems in the nucleus: mechanisms and functions. Antioxidants and Redox Signaling, 2010, 13, 489-509 A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, The, 2010, 135, 2864-70 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radical Biology and Medicine, 2010, 48, 1618-25 Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data			1.7	20
Redox control systems in the nucleus: mechanisms and functions. Antioxidants and Redox Signaling, 2010, 13, 489-509 A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, The, 2010, 135, 2864-70 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radical Biology and Medicine, 2010, 48, 1618-25 Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data	FO.		10.8	128
A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, The, 2010, 135, 2864-70 A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radical Biology and Medicine, 2010, 48, 1618-25 Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data			8.4	136
A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radical Biology and Medicine, 2010, 48, 275-83 Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radical Biology and Medicine, 2010, 48, 1618-25 Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data			8.4	149
Oxidative stress modulates PPAR gamma in vascular endothelial cells. Free Radical Biology and Medicine, 2010, 48, 1618-25 Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data			5	70
Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data			7.8	88
Environmental and Molecular Mutagenesis, 2010, 51, 380-90 Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. Journal of Data			7.8	61
			3.2	74
Science, 2010 , 8, 1-19		Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. <i>Journal of Data Science</i> , 2010 , 8, 1-19	2.1	4

(2008-2010)

142	LC-FTMS-based metabolomics reveals age- and gender-related differences in marmosets. <i>FASEB Journal</i> , 2010 , 24, 504.3	0.9	
141	Self-similarity in NMR Spectra: An Application in Assessing the Level of Cysteine. <i>Journal of Data Science</i> , 2010 , 8, 1-19	2.1	5
140	Cysteine redox potential determines pro-inflammatory IL-1beta levels. PLoS ONE, 2009, 4, e5017	3.7	73
139	Dietary sulfur amino acid supplementation reduces small bowel thiol/disulfide redox state and stimulates ileal mucosal growth after massive small bowel resection in rats. <i>Journal of Nutrition</i> , 2009 , 139, 2272-8	4.1	16
138	Attenuation of angiotensin II-induced vascular dysfunction and hypertension by overexpression of Thioredoxin 2. <i>Hypertension</i> , 2009 , 54, 338-44	8.5	117
137	Oxidation of plasma cysteine/cystine redox state in endotoxin-induced lung injury. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2009 , 40, 90-8	5.7	48
136	Individual variation in macronutrient regulation measured by proton magnetic resonance spectroscopy of human plasma. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2009 , 297, R202-9	3.2	29
135	Gene and protein responses of human monocytes to extracellular cysteine redox potential. <i>Toxicological Sciences</i> , 2009 , 112, 354-62	4.4	21
134	Intestinal redox status of major intracellular thiols in a rat model of chronic alcohol consumption. Journal of Parenteral and Enteral Nutrition, 2009 , 33, 662-8	4.2	6
133	Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2009 , 296, L37-45	5.8	63
132	apLCMSadaptive processing of high-resolution LC/MS data. <i>Bioinformatics</i> , 2009 , 25, 1930-6	7.2	219
131	HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction. <i>AIDS Research and Therapy</i> , 2009 , 6, 1	3	55
130	Measuring the poise of thiol/disulfide couples in vivo. Free Radical Biology and Medicine, 2009, 47, 1329-	- 3/8 8	222
129	Thioredoxin redox western analysis. <i>Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al]</i> , 2009 , Chapter 17, Unit17.12	1	20
128	Prohibitin is a novel regulator of antioxidant response that attenuates colonic inflammation in mice. <i>Gastroenterology</i> , 2009 , 137, 199-208, 208.e1-6	13.3	81
127	Quantification of redox conditions in the nucleus. <i>Methods in Molecular Biology</i> , 2009 , 464, 303-17	1.4	38
126	Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. <i>Free Radical Biology and Medicine</i> , 2008 , 44, 921-37	7.8	443
125	Metabolic effects of enteral versus parenteral alanyl-glutamine dipeptide administration in critically ill patients receiving enteral feeding: a pilot study. <i>Clinical Nutrition</i> , 2008 , 27, 297-306	5.9	43

124	Depletion of plasma antioxidants in surgical intensive care unit patients requiring parenteral feeding: effects of parenteral nutrition with or without alanyl-glutamine dipeptide supplementation. <i>Nutrition</i> , 2008 , 24, 37-44	4.8	56
123	Redox compartmentalization in eukaryotic cells. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2008 , 1780, 1273-90	4	456
122	A rapid LC-FTMS method for the analysis of cysteine, cystine and cysteine/cystine steady-state redox potential in human plasma. <i>Clinica Chimica Acta</i> , 2008 , 396, 43-8	6.2	65
121	Radical-free biology of oxidative stress. American Journal of Physiology - Cell Physiology, 2008, 295, C84	9 5 6,8	778
120	Increased mitochondrial thioredoxin 2 potentiates N-ethylmaleimide-induced cytotoxicity. <i>Chemical Research in Toxicology</i> , 2008 , 21, 1205-10	4	8
119	Endothelial function and aminothiol biomarkers of oxidative stress in healthy adults. <i>Hypertension</i> , 2008 , 52, 80-5	8.5	69
118	Identification of thioredoxin-2 as a regulator of the mitochondrial permeability transition. <i>Toxicological Sciences</i> , 2008 , 105, 44-50	4.4	43
117	Associations of plasma-soluble fas ligand with aging and age-related macular degeneration. <i>Investigative Ophthalmology and Visual Science</i> , 2008 , 49, 1345-9		17
116	Association between adherence to the Mediterranean diet and oxidative stress. <i>American Journal of Clinical Nutrition</i> , 2008 , 88, 1364-70	7	152
115	Selective oxidative stress in cell nuclei by nuclear-targeted D-amino acid oxidase. <i>Antioxidants and Redox Signaling</i> , 2007 , 9, 807-16	8.4	54
114	Diurnal variation in glutathione and cysteine redox states in human plasma. <i>American Journal of Clinical Nutrition</i> , 2007 , 86, 1016-23	7	145
113	Local glutathione redox status does not regulate ileal mucosal growth after massive small bowel resection in rats. <i>Journal of Nutrition</i> , 2007 , 137, 320-5	4.1	9
112	Control of extracellular cysteine/cystine redox state by HT-29 cells is independent of cellular glutathione. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2007 , 293, R1069-75	3.2	47
111	Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. <i>EMBO Journal</i> , 2007 , 26, 4457-66	13	207
110	Selective protection of nuclear thioredoxin-1 and glutathione redox systems against oxidation during glucose and glutamine deficiency in human colonic epithelial cells. <i>Free Radical Biology and Medicine</i> , 2007 , 42, 363-70	7.8	58
109	Nuclear and cytoplasmic peroxiredoxin-1 differentially regulate NF-kappaB activities. <i>Free Radical Biology and Medicine</i> , 2007 , 43, 282-8	7.8	59
108	Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation. <i>Toxicological Sciences</i> , 2007 , 95, 163-71	4.4	104
107	Extracellular cysteine/cystine redox potential controls lung fibroblast proliferation and matrix expression through upregulation of transforming growth factor-beta. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2007 , 293, L972-81	5.8	68

(2006-2007)

106	Oxidative stress markers are associated with persistent atrial fibrillation. <i>Clinical Chemistry</i> , 2007 , 53, 1652-7	5.5	164
105	Stimulation of colonic mucosal growth associated with oxidized redox status in rats. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2007 , 292, R1081-91	3.2	10
104	Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress. <i>Archives of Biochemistry and Biophysics</i> , 2007 , 465, 119-26	4.1	113
103	Effects of long-term zinc supplementation on plasma thiol metabolites and redox status in patients with age-related macular degeneration. <i>American Journal of Ophthalmology</i> , 2007 , 143, 206-211	4.9	27
102	Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. <i>Experimental Neurology</i> , 2007 , 204, 619-30	5.7	92
101	Reactive aldehyde modification of thioredoxin-1 activates early steps of inflammation and cell adhesion. <i>American Journal of Pathology</i> , 2007 , 171, 1670-81	5.8	81
100	Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. <i>Free Radical Biology and Medicine</i> , 2006 , 40, 138-45	7.8	205
99	Disruption of mitochondrial redox circuitry in oxidative stress. <i>Chemico-Biological Interactions</i> , 2006 , 163, 38-53	5	134
98	Protection against oxidant-induced apoptosis by mitochondrial thioredoxin in SH-SY5Y neuroblastoma cells. <i>Toxicology and Applied Pharmacology</i> , 2006 , 216, 256-62	4.6	28
97	New double quantum coherence filter for localized detection of glutathione in vivo. <i>Magnetic Resonance in Medicine</i> , 2006 , 55, 676-80	4.4	29
96	Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-alpha-induced reactive oxygen species generation, NF-kappaB activation, and apoptosis. <i>Toxicological Sciences</i> , 2006 , 91, 643-50	4.4	116
95	Mitochondrial thioredoxin in regulation of oxidant-induced cell death. FEBS Letters, 2006, 580, 6596-602	2 3.8	82
94	Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. <i>Annual Review of Pharmacology and Toxicology</i> , 2006 , 46, 215-34	17.9	330
93	Extracellular redox state: refining the definition of oxidative stress in aging. <i>Rejuvenation Research</i> , 2006 , 9, 169-81	2.6	183
92	The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults. <i>Journal of the American College of Cardiology</i> , 2006 , 47, 1005-11	15.1	180
91	Thiol/disulfide redox status is oxidized in plasma and small intestinal and colonic mucosa of rats with inadequate sulfur amino acid intake. <i>Journal of Nutrition</i> , 2006 , 136, 1242-8	4.1	38
90	Thiols in Cancer 2006 , 307-320		1
89	Redefining oxidative stress. <i>Antioxidants and Redox Signaling</i> , 2006 , 8, 1865-79	8.4	1143

68 Gut mucosal redox status in a rat model of chronic alcohol consumption. FASEB Journal, 2006, 20, A146 0.9

Tissue Distribution and Mitochondrial Localization of Human Thioredoxin 2 (hTrx2) in transgenic mice. FASEB Journal, 2006, 20, LB102 Dietary glutamine increases secretory IgA and may suppress gram-negative bacterial translocation in a rat model of short bowel syndrome (SBS). FASEB Journal, 2006, 20, A124 S5 GSH is required to maintain gut intracellular cysteine redox status after intestinal surgery in rats. FASEB Journal, 2006, 20, A146 Association between novel oxidative stress markers and C-reactive protein among adults without clinical coronary heart disease. Atherosclerosis, 2005, 178, 115-21 Antioxidant supplements prevent oxidation of cysteine/cystine redox in patients with age-related macular degeneration. American Journal of Ophthalmology, 2005, 140, 1020-6 Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. Biochemical Journal, 2005, 386, 215-9 Mitochondrial Thioredoxin: Critical Protection for the Redox Throttle of Life. Annals of the New York Academy of Sciences, 2005, 1055, 221-221	0.9 0.9 0.9 3.1 4.9 3.8	106 61 141
in a rat model of short bowel syndrome (SBS). FASEB Journal, 2006, 20, A124 GSH is required to maintain gut intracellular cysteine redox status after intestinal surgery in rats. FASEB Journal, 2006, 20, A146 Association between novel oxidative stress markers and C-reactive protein among adults without clinical coronary heart disease. Atherosclerosis, 2005, 178, 115-21 Antioxidant supplements prevent oxidation of cysteine/cystine redox in patients with age-related macular degeneration. American Journal of Ophthalmology, 2005, 140, 1020-6 Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. Biochemical Journal, 2005, 386, 215-9 Mitochondrial Thioredoxin: Critical Protection for the Redox Throttle of Life. Annals of the New York Academy of Sciences, 2005, 1055, 221-221	0.9 3.1 4.9 3.8	61
Association between novel oxidative stress markers and C-reactive protein among adults without clinical coronary heart disease. Atherosclerosis, 2005, 178, 115-21 Antioxidant supplements prevent oxidation of cysteine/cystine redox in patients with age-related macular degeneration. American Journal of Ophthalmology, 2005, 140, 1020-6 Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. Biochemical Journal, 2005, 386, 215-9 Mitochondrial Thioredoxin: Critical Protection for the Redox Throttle of Life. Annals of the New York Academy of Sciences, 2005, 1055, 221-221	3.1 4.9 3.8	61
clinical coronary heart disease. <i>Atherosclerosis</i> , 2005 , 178, 115-21 Antioxidant supplements prevent oxidation of cysteine/cystine redox in patients with age-related macular degeneration. <i>American Journal of Ophthalmology</i> , 2005 , 140, 1020-6 Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. <i>Biochemical Journal</i> , 2005 , 386, 215-9 Mitochondrial Thioredoxin: Critical Protection for the Redox Throttle of Life. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1055, 221-221	4.9	61
macular degeneration. American Journal of Ophthalmology, 2005, 140, 1020-6 Compartmental oxidation of thiol-disulphide redox couples during epidermal growth factor signalling. Biochemical Journal, 2005, 386, 215-9 Mitochondrial Thioredoxin: Critical Protection for the Redox Throttle of Life. Annals of the New York Academy of Sciences, 2005, 1055, 221-221	3.8	
signalling. <i>Biochemical Journal</i> , 2005 , 386, 215-9 Mitochondrial Thioredoxin: Critical Protection for the Redox Throttle of Life. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1055, 221-221		141
⁸¹ York Academy of Sciences, 2005 , 1055, 221-221	6.5	
Oxidant-induced apoptosis in human retinal pigment epithelial cells: dependence on extracellular redox state. <i>Investigative Ophthalmology and Visual Science</i> , 2005 , 46, 1054-61		99
Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state. <i>Circulation</i> , 2005 , 111, 2973-80	16.7	131
The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress. <i>Circulation Research</i> , 2005 , 97, 637-44	15.7	104
S-nitroso-albumin carries a thiol-labile pool of nitric oxide, which causes venodilation in the rat. American Journal of Physiology - Heart and Circulatory Physiology, 2005 , 289, H916-23	5.2	15
Extracellular cysteine/cystine redox regulates the p44/p42 MAPK pathway by metalloproteinase-dependent epidermal growth factor receptor signaling. <i>American Journal of Physiology - Renal Physiology</i> , 2005 , 289, G70-8	5.1	49
Cysteine starvation activates the redox-dependent mitochondrial permeability transition in retinal pigment epithelial cells. <i>Investigative Ophthalmology and Visual Science</i> , 2004 , 45, 4183-9		41
H2O2-dependent activation of GCLC-ARE4 reporter occurs by mitogen-activated protein kinase pathways without oxidation of cellular glutathione or thioredoxin-1. <i>Journal of Biological Chemistry</i> , 2004 , 279, 5837-45	5.4	80
Compartmentation of Nrf-2 redox control: regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin-1. <i>Toxicological Sciences</i> , 2004 , 82, 308-17	4.4	130
The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature, 2004 , 427, 461-5	50.4	883
The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat. <i>BioEssays</i> , 2004 , 26, 894-900	4.1	49

(2002-2004)

70	Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. <i>FASEB Journal</i> , 2004 , 18, 1246-8	0.9	248
69	Extracellular thiols and thiol/disulfide redox in metabolism. <i>Annual Review of Nutrition</i> , 2004 , 24, 481-5	09 .9	321
68	Total equivalent of reactive chemicals in 142 human food items is highly variable within and between major food groups. <i>Journal of Nutrition</i> , 2004 , 134, 1114-9	4.1	7
67	Glutamine prevents cytokine-induced apoptosis in human colonic epithelial cells. <i>Journal of Nutrition</i> , 2003 , 133, 3065-71	4.1	7º
66	Glutamine and KGF each regulate extracellular thiol/disulfide redox and enhance proliferation in Caco-2 cells. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2003 , 285, R1421-9	3.2	45
65	Redox state of glutathione and thioredoxin in differentiation and apoptosis. <i>BioFactors</i> , 2003 , 17, 307-	146.1	53
64	Inhibition of influenza infection by glutathione. Free Radical Biology and Medicine, 2003, 34, 928-36	7.8	150
63	Oxidation of glutathione and cysteine in human plasma associated with smoking. <i>Free Radical Biology and Medicine</i> , 2003 , 35, 1582-8	7.8	154
62	Oxidation of nuclear thioredoxin during oxidative stress. FEBS Letters, 2003, 543, 144-7	3.8	88
61	Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. <i>Journal of Biological Chemistry</i> , 2003 , 278, 33408-15	5.4	231
60	Oxidation of the glutathione/glutathione disulfide redox state is induced by cysteine deficiency in human colon carcinoma HT29 cells. <i>Journal of Nutrition</i> , 2002 , 132, 2303-6	4.1	41
59	Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. <i>Free Radical Biology and Medicine</i> , 2002 , 33, 1290-300	7.8	303
58	Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line. <i>Free Radical Biology and Medicine</i> , 2002 , 33, 1499-506	7.8	119
57	Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. <i>Journal of Biological Chemistry</i> , 2002 , 277, 33242-8	5.4	126
56	Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. <i>FASEB Journal</i> , 2002 , 16, 1263-5	0.9	194
55	Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. <i>American Journal of Physiology - Renal Physiology</i> , 2002 , 283, G1352-9	5.1	168
54	Redox potential of GSH/GSSG couple: assay and biological significance. <i>Methods in Enzymology</i> , 2002 , 348, 93-112	1.7	567
53	Oxidative Stress and Age-Related Macular Degeneration 2002 , 987-998		

52	Increased oxidant-induced apoptosis in cultured nondividing human retinal pigment epithelial cells. <i>Investigative Ophthalmology and Visual Science</i> , 2002 , 43, 2546-53		20
51	Protection of retinal pigment epithelial cells from oxidative damage by oltipraz, a cancer chemopreventive agent. <i>Investigative Ophthalmology and Visual Science</i> , 2002 , 43, 3550-4		31
50	BIOMARKERS OF OXIDATIVE STRESS STUDY: ARE PLASMA ANTIOXIDANTS MARKERS OF CC14 POISONING? 2001 , 98-105		
49	Regulation of glutathione redox status in lung and liver by conditioning regimens and keratinocyte growth factor in murine allogeneic bone marrow transplantation. <i>Transplantation</i> , 2001 , 72, 1354-62	1.8	38
48	Rat jejunum controls luminal thiol-disulfide redox. <i>Journal of Nutrition</i> , 2000 , 130, 2739-45	4.1	44
47	Oxidative damage and protection of the RPE. <i>Progress in Retinal and Eye Research</i> , 2000 , 19, 205-21	20.5	487
46	Biomarkers of oxidative stress study: are plasma antioxidants markers of CCl(4) poisoning?. <i>Free Radical Biology and Medicine</i> , 2000 , 28, 838-45	7.8	123
45	Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA. <i>Free Radical Biology and Medicine</i> , 2000 , 29, 334-42	7.8	43
44	Redox state of glutathione in human plasma. Free Radical Biology and Medicine, 2000, 28, 625-35	7.8	447
43	Plasma antioxidant status after high-dose chemotherapy: a randomized trial of parenteral nutrition in bone marrow transplantation patients. <i>American Journal of Clinical Nutrition</i> , 2000 , 72, 181-9	7	131
42	Enteral nutrition and keratinocyte growth factor regulate expression of glutathione-related enzyme messenger RNAs in rat intestine. <i>Journal of Parenteral and Enteral Nutrition</i> , 2000 , 24, 67-75	4.2	19
41	Diet and apoptosis. Annual Review of Nutrition, 2000, 20, 485-505	9.9	80
40	Keratinocyte growth factor enhances glutathione redox state in rat intestinal mucosa during nutritional repletion. <i>Journal of Nutrition</i> , 1999 , 129, 1278-84	4.1	44
39	Dietary compounds that induce cancer preventive phase 2 enzymes activate apoptosis at comparable doses in HT29 colon carcinoma cells. <i>Journal of Nutrition</i> , 1999 , 129, 1827-35	4.1	53
38	Interactions between nutrients and peptide growth factors in intestinal growth, repair, and function. <i>Journal of Parenteral and Enteral Nutrition</i> , 1999 , 23, S174-83	4.2	29
37	Mitochondrial redox signaling during apoptosis. <i>Journal of Bioenergetics and Biomembranes</i> , 1999 , 31, 327-34	3.7	88
36	Glutathione redox potential in response to differentiation and enzyme inducers. <i>Free Radical Biology and Medicine</i> , 1999 , 27, 1208-18	7.8	279
35	Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. <i>Free Radical Biology and Medicine</i> , 1998 , 24, 699-704	7.8	374

34	Detection of pro-caspase-3 in cytosol and mitochondria of various tissues. FEBS Letters, 1998, 431, 167	-9 3.8	70
33	Glutathione measurement in human plasma. Evaluation of sample collection, storage and derivatization conditions for analysis of dansyl derivatives by HPLC. <i>Clinica Chimica Acta</i> , 1998 , 275, 17.	5-84	425
32	Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. <i>Journal of Biological Chemistry</i> , 1998 , 273, 11401-4	5.4	606
31	Glutathione oxidation is associated with altered microtubule function and disrupted fertilization in mature hamster oocytes. <i>Biology of Reproduction</i> , 1997 , 57, 1413-9	3.9	101
30	Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. <i>Science</i> , 1997 , 275, 1129-32	33.3	4330
29	Ascorbate deficiency and oxidative stress in the alveolar type II cell. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 1997 , 273, L782-8	5.8	12
28	Compartmentation of glutathione: implications for the study of toxicity and disease. <i>Toxicology and Applied Pharmacology</i> , 1996 , 140, 1-12	4.6	284
27	Variability in glutathione-dependent detoxication in vivo and its relevance to detoxication of chemical mixtures. <i>Toxicology</i> , 1995 , 105, 267-74	4.4	51
26	Effects of N-acetyl-L-cysteine on T-cell apoptosis are not mediated by increased cellular glutathione. <i>Immunology Letters</i> , 1995 , 45, 205-9	4.1	90
25	Dietary glutathione intake in humans and the relationship between intake and plasma total glutathione level. <i>Nutrition and Cancer</i> , 1994 , 21, 33-46	2.8	58
24	Acute hepatic and renal toxicity from low doses of acetaminophen in the absence of alcohol abuse or malnutrition: Evidence for increased susceptibility to drug toxicity due to cardiopulmonary and renal insufficiency. <i>Hepatology</i> , 1994 , 19, 1141-1148	11.2	63
23	Acute hepatic and renal toxicity from low doses of acetaminophen in the absence of alcohol abuse or malnutrition: Evidence for increased susceptibility to drug toxicity due to cardiopulmonary and renal insufficiency 1994 , 19, 1141		2
22	Selective depletion of mitochondrial glutathione concentrations by (R,S)-3-hydroxy-4-pentenoate potentiates oxidative cell death. <i>Chemical Research in Toxicology</i> , 1993 , 6, 75-81	4	78
21	Plasma total glutathione in humans and its association with demographic and health-related factors. <i>British Journal of Nutrition</i> , 1993 , 70, 797-808	3.6	62
20	Glutathione in foods listed in the National Cancer Institute@Health Habits and History Food Frequency Questionnaire. <i>Nutrition and Cancer</i> , 1992 , 17, 57-75	2.8	134
19	Calcium- and phosphate-dependent release and loading of glutathione by liver mitochondria. <i>Archives of Biochemistry and Biophysics</i> , 1991 , 290, 51-6	4.1	38
18	Stimulation of glutathione absorption in rat small intestine by alpha-adrenergic agonists. <i>FASEB Journal</i> , 1991 , 5, 2721-7	0.9	18
17	Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887. <i>FASEB Journal</i> , 1990 , 4, 95-100	0.9	32

16	Use of exogenous glutathione for metabolism of peroxidized methyl linoleate in rat small intestine. <i>Journal of Nutrition</i> , 1990 , 120, 1115-21	4.1	34
15	Oxygen dependence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia. <i>Biochemical Pharmacology</i> , 1990 , 39, 729-36	6	86
14	Heterogeneity of pH in the aqueous cytoplasm of renal proximal tubule cells. <i>FASEB Journal</i> , 1989 , 3, 52-8	0.9	16
13	Drug metabolism and toxicity during hypoxia. <i>Drug Metabolism Reviews</i> , 1989 , 20, 247-60	7	43
12	The pathophysiological significance of lipid peroxidation in oxidative cell injury. <i>Hepatology</i> , 1987 , 7, 377-86	11.2	238
11	Purification and properties of the membranal thiol oxidase from porcine kidney. <i>Archives of Biochemistry and Biophysics</i> , 1986 , 247, 120-30	4.1	22
10	Distribution of oxidized and reduced forms of glutathione and cysteine in rat plasma. <i>Archives of Biochemistry and Biophysics</i> , 1985 , 240, 583-92	4.1	172
9	Oxidation of myoglobin in isolated adult rat cardiac myocytes by 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid. <i>FEBS Letters</i> , 1983 , 163, 292-6	3.8	40
8	Uptake of riboflavin by isolated rat liver cells. <i>Journal of Nutrition</i> , 1983 , 113, 1249-54	4.1	40
7	Intracellular O2 gradients in cardiac myocytes. Lack of a role for myoglobin in facilitation of intracellular O2 diffusion. <i>Biochemical and Biophysical Research Communications</i> , 1982 , 105, 419-24	3.4	56
6	Intracellular catalase function: analysis of the catalatic activity by product formation in isolated liver cells. <i>Archives of Biochemistry and Biophysics</i> , 1982 , 214, 806-14	4.1	38
5	Resolution of a renal sulfhydryl (glutathione) oxidase from gamma-glutamyltransferase. <i>FEBS Letters</i> , 1981 , 124, 166-72	3.8	29
4	Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. <i>Archives of Biochemistry and Biophysics</i> , 1981 , 210, 505-16	4.1	287
3	Apparatus for automatically maintaining cell suspension at low, constant oxygen concentrations: the oxystat. <i>Analytical Biochemistry</i> , 1978 , 90, 155-66	3.1	11
2	Neurotoxicity of Manufactured Nanoparticles405-428		
1	Compartmentation of Redox Signaling and Control: Discrimination of Oxidative Stress in Mitochondria, Cytoplasm, Nuclei, and Endoplasmic Reticulum433-461		1