
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3396295/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Enhanced visibility through microbubble-induced photoacoustic fluctuation imaging. JASA Express<br>Letters, 2022, 2, 012001.                                                         | 0.5 | 1         |
| 2  | Effect of Thermal History and Hydrocarbon Core Size on Perfluorocarbon Endoskeletal Droplet<br>Vaporization. Langmuir, 2022, 38, 2634-2641.                                          | 1.6 | 2         |
| 3  | Acoustically manipulating internal structure of disk-in-sphere endoskeletal droplets. Nature<br>Communications, 2022, 13, 987.                                                       | 5.8 | 12        |
| 4  | Microbubble Size and Dose Effects on Pharmacokinetics. ACS Biomaterials Science and Engineering, 2022, 8, 1686-1695.                                                                 | 2.6 | 17        |
| 5  | Nanobubbles are Non-Echogenic for Fundamental-Mode Contrast-Enhanced Ultrasound Imaging.<br>Bioconjugate Chemistry, 2022, 33, 1106-1113.                                             | 1.8 | 6         |
| 6  | Ultrasound Contrast Agents. , 2021, , 639-653.                                                                                                                                       |     | 3         |
| 7  | Contrast-Enhanced Sonography with Biomimetic Lung Surfactant Nanodrops. Langmuir, 2021, 37, 2386-2396.                                                                               | 1.6 | 1         |
| 8  | Photoacoustic Impulse Response of Lipid-Coated Ultrasound Contrast Agents. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2311-2314.             | 1.7 | 2         |
| 9  | Microbubbles and Nanodrops for photoacoustic tomography. Current Opinion in Colloid and Interface Science, 2021, 55, 101464.                                                         | 3.4 | 10        |
| 10 | Detecting insulitis in type 1 diabetes with ultrasound phase-change contrast agents. Proceedings of the United States of America, 2021, 118, .                                       | 3.3 | 3         |
| 11 | Treatment of a Rat Model of LPS-Induced ARDS via Peritoneal Perfusion of Oxygen Microbubbles.<br>Journal of Surgical Research, 2020, 246, 450-456.                                   | 0.8 | 17        |
| 12 | Simulation of xâ€rayâ€induced acoustic imaging for absolute dosimetry: Accuracy of image<br>reconstruction methods. Medical Physics, 2020, 47, 1280-1290.                            | 1.6 | 18        |
| 13 | Acoustic nanodrops for biomedical applications. Current Opinion in Colloid and Interface Science, 2020, 50, 101383.                                                                  | 3.4 | 14        |
| 14 | Perfusion-guided sonopermeation of neuroblastoma: a novel strategy for monitoring and predicting<br>liposomal doxorubicin uptake <i>in vivo</i> . Theranostics, 2020, 10, 8143-8161. | 4.6 | 17        |
| 15 | The effect of size range on ultrasound-induced translations in microbubble populations. Journal of the Acoustical Society of America, 2020, 147, 3236-3247.                          | 0.5 | 12        |
| 16 | Microbubble Agents: New Directions. Ultrasound in Medicine and Biology, 2020, 46, 1326-1343.                                                                                         | 0.7 | 118       |
| 17 | Phospholipid Oxygen Microbubbles for Image-Guided Therapy. Nanotheranostics, 2020, 4, 83-90.                                                                                         | 2.7 | 20        |
| 18 | Changes in microbubble dynamics upon adhesion to a solid surface. Applied Physics Letters, 2020, 116, 123703.                                                                        | 1.5 | 3         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Bubble Inflation Using Phase-Change Perfluorocarbon Nanodroplets as a Strategy for Enhanced<br>Ultrasound Imaging and Therapy. Langmuir, 2020, 36, 2954-2965.                                                    | 1.6 | 20        |
| 20 | Vaporizable endoskeletal droplets via tunable interfacial melting transitions. Science Advances, 2020,<br>6, eaaz7188.                                                                                           | 4.7 | 16        |
| 21 | Microbubble Radiation Force-Induced Translation in Plane-Wave Versus Focused Transmission Modes.<br>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 1856-1865.                | 1.7 | 9         |
| 22 | Effect of Hydrostatic Pressure, Boundary Constraints and Viscosity on the Vaporization Threshold of<br>Low-Boiling-Point Phase-Change Contrast Agents. Ultrasound in Medicine and Biology, 2019, 45,<br>968-979. | 0.7 | 19        |
| 23 | Ultrasound-mediated delivery of siESE complexed with microbubbles attenuates HER2+/- cell line proliferation and tumor growth in rodent models of breast cancer. Nanotheranostics, 2019, 3, 212-222.             | 2.7 | 15        |
| 24 | Pre-clinical assessment of a water-in-fluorocarbon emulsion for the treatment of pulmonary vascular diseases. Drug Delivery, 2019, 26, 147-157.                                                                  | 2.5 | 6         |
| 25 | Designing Oxygen Microbubbles for Treating Tumor Hypoxia. , 2019, , .                                                                                                                                            |     | 1         |
| 26 | Single Microbubble Measurements for Bound and Unbound Conditions. , 2019, , .                                                                                                                                    |     | 0         |
| 27 | Ultrasound radiation force as a method to characterize the viscosity of microbubble shells. , 2019, , .                                                                                                          |     | 0         |
| 28 | Perfusion-Guided Monitoring of Tumor Response to Sonoporation and Prediction of Liposomal Doxorubicin Uptake Using Microbubble Contrast Agents. , 2019, , .                                                      |     | 0         |
| 29 | Single Microbubble Measurements for Bound and Unbound Conditions. , 2019, , .                                                                                                                                    |     | О         |
| 30 | Intermolecular Forces Model for Lipid Microbubble Shells. Langmuir, 2019, 35, 10042-10051.                                                                                                                       | 1.6 | 16        |
| 31 | Click Conjugation of Cloaked Peptide Ligands to Microbubbles. Bioconjugate Chemistry, 2018, 29, 1534-1543.                                                                                                       | 1.8 | 31        |
| 32 | Photoacoustic technique to measure temperature effects on microbubble viscoelastic properties.<br>Applied Physics Letters, 2018, 112, 111905.                                                                    | 1.5 | 23        |
| 33 | A Study of Radiation Force Effects in Plane-Wave Transmission Mode. , 2018, , .                                                                                                                                  |     | 1         |
| 34 | Reverse engineering the ultrasound contrast agent. Advances in Colloid and Interface Science, 2018, 262, 39-49.                                                                                                  | 7.0 | 41        |
| 35 | State-of-the-art of microbubble-assisted blood-brain barrier disruption. Theranostics, 2018, 8, 4393-4408.                                                                                                       | 4.6 | 113       |
| 36 | Plane-Wave Contrast Imaging: A Radiation Force Point of View. IEEE Transactions on Ultrasonics,<br>Ferroelectrics, and Frequency Control, 2018, 65, 2296-2300.                                                   | 1.7 | 9         |

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Preâ€clinical application of aerosolized waterâ€inâ€fluorocarbon emulsion intrapulmonary drug delivery<br>system for targeting pulmonary vascular diseases. FASEB Journal, 2018, 32, 858.1.                                                                               | 0.2 | 0         |
| 38 | Hydrostatic Pressurization of Lung Surfactant Microbubbles: Observation of a Strain-Rate Dependent Elasticity. Langmuir, 2017, 33, 13699-13707.                                                                                                                           | 1.6 | 10        |
| 39 | Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in<br>Medical Ultrasonography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,<br>2017, 64, 252-263.                                                   | 1.7 | 62        |
| 40 | Single microbubble measurements of temperature dependent viscoelastic properties. , 2017, , .                                                                                                                                                                             |     | 0         |
| 41 | Notice of Removal: Daily intra-tumoral administration of oxygen microbubbles slows tumor growth in the absence of other therapy in a rat subcutaneous fibrosarcoma model. , 2017, , .                                                                                     |     | 0         |
| 42 | Notice of Removal: Oxygen microbubbles improve tumor control after radiotherapy in a rat fibrosarcoma model. , 2017, , .                                                                                                                                                  |     | 1         |
| 43 | Microbubble gas volume: A unifying dose parameter in blood-brain barrier opening by focused ultrasound. Theranostics, 2017, 7, 144-152.                                                                                                                                   | 4.6 | 79        |
| 44 | Notice of Removal: Tumor hypoxia modulation dynamics using intra-tumoral, intra-peritoneal and<br>intra-venous oxygen microbubbles administrations — In vivo real-time measurements via spectroscopic<br>absorbance on a rat subcutaneous fibrosarcoma model. , 2017, , . |     | 0         |
| 45 | Single microbubble measurements of temperature dependent viscoelastic properties. , 2017, , .                                                                                                                                                                             |     | 0         |
| 46 | Peritoneal Membrane Oxygenation Therapy for Rats With Acute Respiratory Distress Syndrome1.<br>Journal of Medical Devices, Transactions of the ASME, 2016, 10, 020905.                                                                                                    | 0.4 | 4         |
| 47 | Stability of Monodisperse Phospholipid-Coated Microbubbles Formed by Flow-Focusing at High<br>Production Rates. Langmuir, 2016, 32, 3937-3944.                                                                                                                            | 1.6 | 74        |
| 48 | On the thermodynamics and kinetics of superheated fluorocarbon phase-change agents. Advances in<br>Colloid and Interface Science, 2016, 237, 15-27.                                                                                                                       | 7.0 | 56        |
| 49 | Single Microbubble Measurements of Lipid Monolayer Viscoelastic Properties for Small-Amplitude<br>Oscillations. Langmuir, 2016, 32, 9410-9417.                                                                                                                            | 1.6 | 42        |
| 50 | Microbubble lipid shell elasticity: Simulation and measurement. , 2016, , .                                                                                                                                                                                               |     | 1         |
| 51 | Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle. Biomaterials, 2016, 80, 20-32.                                                                                    | 5.7 | 116       |
| 52 | Application of Elastography for the Noninvasive Assessment of Biomechanics in Engineered Biomaterials and Tissues. Annals of Biomedical Engineering, 2016, 44, 705-724.                                                                                                   | 1.3 | 27        |
| 53 | Reducing Tumour Hypoxia via Oral Administration of Oxygen Nanobubbles. PLoS ONE, 2016, 11, e0168088.                                                                                                                                                                      | 1.1 | 52        |
| 54 | Design and Development of a Rat Peritoneal Infusion Device for Oxygen Microbubble Bolus Delivery1.<br>Journal of Medical Devices, Transactions of the ASME, 2016, 10, .                                                                                                   | 0.4 | 0         |

| #  | Article                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | High Efficiency Molecular Delivery with Sequential Low-Energy Sonoporation Bursts. Theranostics, 2015, 5, 1419-1427.                                                     | 4.6  | 25        |
| 56 | Therapeutic gas delivery via microbubbles and liposomes. Journal of Controlled Release, 2015, 209, 139-149.                                                              | 4.8  | 100       |
| 57 | Ultrasound-modulated fluorescence based on donor-acceptor-labeled microbubbles. Journal of<br>Biomedical Optics, 2015, 20, 036012.                                       | 1.4  | 6         |
| 58 | Thermal Activation of Superheated Lipid-Coated Perfluorocarbon Drops. Langmuir, 2015, 31, 4627-4634.                                                                     | 1.6  | 63        |
| 59 | Fluorocarbon Nanodrops as Acoustic Temperature Probes. Langmuir, 2015, 31, 10656-10663.                                                                                  | 1.6  | 26        |
| 60 | The Treatment of Acute Respiratory Distress Syndrome in Rats With a Peritoneal Dosing System1.<br>Journal of Medical Devices, Transactions of the ASME, 2015, 9, 020929. | 0.4  | 1         |
| 61 | Optically induced resonance of nanoparticle-loaded microbubbles. Optics Letters, 2014, 39, 3732.                                                                         | 1.7  | 21        |
| 62 | Engineering optically triggered droplets for photoacoustic imaging and therapy. Biomedical Optics Express, 2014, 5, 4417.                                                | 1.5  | 49        |
| 63 | Microbubble dispersions of natural lung surfactant. Current Opinion in Colloid and Interface Science, 2014, 19, 480-489.                                                 | 3.4  | 11        |
| 64 | Ultrasound-modulated fluorescence based on fluorescent microbubbles. Journal of Biomedical Optics, 2014, 19, 085005.                                                     | 1.4  | 19        |
| 65 | Systemic oxygen delivery by peritoneal perfusion of oxygen microbubbles. Biomaterials, 2014, 35, 2600-2606.                                                              | 5.7  | 59        |
| 66 | State-of-the-art materials for ultrasound-triggered drug delivery. Advanced Drug Delivery Reviews, 2014, 72, 3-14.                                                       | 6.6  | 376       |
| 67 | Better contrast with vesicles. Nature Nanotechnology, 2014, 9, 248-249.                                                                                                  | 15.6 | 10        |
| 68 | Condensation Phase Diagrams for Lipid-Coated Perfluorobutane Microbubbles. Langmuir, 2014, 30,<br>6209-6218.                                                             | 1.6  | 36        |
| 69 | Single-Particle Optical Sizing of Microbubbles. Ultrasound in Medicine and Biology, 2014, 40, 138-147.                                                                   | 0.7  | 27        |
| 70 | Peritoneal Microbubble Oxygenation: An Extrapulmonary Respiration Treatment in Rabbits1. Journal of Medical Devices, Transactions of the ASME, 2014, 8, .                | 0.4  | 3         |
| 71 | Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles. Soft Matter, 2013, 9, 7743.                                                          | 1.2  | 45        |
| 72 | The effect of lipid monolayer in-plane rigidity on inÂvivo microbubble circulation persistence.<br>Biomaterials, 2013, 34, 6862-6870.                                    | 5.7  | 93        |

5

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | In Vivo Demonstration of Cancer Molecular Imaging with Ultrasound Radiation Force and Buried-Ligand Microbubbles. Molecular Imaging, 2013, 12, 7290.2013.00052.                   | 0.7 | 27        |
| 74 | Lung Surfactant Microbubbles Increase Lipophilic Drug Payload for Ultrasound-Targeted Delivery.<br>Theranostics, 2013, 3, 409-419.                                                | 4.6 | 43        |
| 75 | In vivo demonstration of cancer molecular imaging with ultrasound radiation force and buried-ligand microbubbles. Molecular Imaging, 2013, 12, 357-63.                            | 0.7 | 12        |
| 76 | Lipid monolayer collapse and microbubble stability. Advances in Colloid and Interface Science, 2012, 183-184, 82-99.                                                              | 7.0 | 115       |
| 77 | Effect of Surface Architecture on InÂVivo Ultrasound Contrast Persistence of Targeted Size-Selected<br>Microbubbles. Ultrasound in Medicine and Biology, 2012, 38, 492-503.       | 0.7 | 34        |
| 78 | Lipid monolayer dilatational mechanics during microbubble gas exchange. Soft Matter, 2012, 8, 4756.                                                                               | 1.2 | 53        |
| 79 | Oxygen Gas–Filled Microparticles Provide Intravenous Oxygen Delivery. Science Translational<br>Medicine, 2012, 4, 140ra88.                                                        | 5.8 | 95        |
| 80 | Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. Journal of<br>Controlled Release, 2012, 157, 224-234.                                    | 4.8 | 112       |
| 81 | The role of poly(ethylene glycol) brush architecture in complement activation on targeted microbubble surfaces. Biomaterials, 2011, 32, 6579-6587.                                | 5.7 | 68        |
| 82 | Microbubble-Size Dependence of Focused Ultrasound-Induced Blood–Brain Barrier Opening in<br>Mice <i>In Vivo</i> . IEEE Transactions on Biomedical Engineering, 2010, 57, 145-154. | 2.5 | 217       |
| 83 | Effect of Microbubble Size on Fundamental Mode High Frequency Ultrasound Imaging in Mice.<br>Ultrasound in Medicine and Biology, 2010, 36, 935-948.                               | 0.7 | 156       |
| 84 | INJECTABLE OXYGEN DELIVERY BASED ON PROTEIN-SHELLED MICROBUBBLES. Nano LIFE, 2010, 01, 215-218.                                                                                   | 0.6 | 22        |
| 85 | Microbubble Dissolution in a Multigas Environment. Langmuir, 2010, 26, 6542-6548.                                                                                                 | 1.6 | 132       |
| 86 | Phospholipid-Stabilized Microbubble Foam for Injectable Oxygen Delivery. Langmuir, 2010, 26, 15726-15729.                                                                         | 1.6 | 80        |
| 87 | Ligand Conjugation to Bimodal Poly(ethylene glycol) Brush Layers on Microbubbles. Langmuir, 2010, 26, 13183-13194.                                                                | 1.6 | 56        |
| 88 | Microbubble shell break-up and collapse during gas exchange. , 2010, , .                                                                                                          |     | 2         |
| 89 | Comparing tumor response to VEGF blockade therapy using high frequency ultrasound imaging with size-selected microbubble contrast agents. , 2010, , .                             |     | 0         |
| 90 | Microbubble compositions, properties and biomedical applications. Bubble Science, Engineering & Technology, 2009, 1, 3-17.                                                        | 0.2 | 444       |

| #   | Article                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | High-frequency ultrasound imaging of size-isolated microbubbles in mice. , 2009, , .                                                                                  |     | 2         |
| 92  | An in-vivo evaluation of the effects of anesthesia carrier gases on ultrasound contrast agent circulation. , 2009, , .                                                |     | 1         |
| 93  | The Dependence of the Ultrasound-Induced Blood-Brain Barrier Opening Characteristics on Microbubble Size In Vivo. , 2009, , .                                         |     | 3         |
| 94  | Microbubble size isolation by differential centrifugation. Journal of Colloid and Interface Science, 2009, 329, 316-324.                                              | 5.0 | 366       |
| 95  | Nanostructural features on stable microbubbles. Soft Matter, 2009, 5, 716-720.                                                                                        | 1.2 | 24        |
| 96  | Lung surfactant microbubbles. Soft Matter, 2009, 5, 4835.                                                                                                             | 1.2 | 18        |
| 97  | A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials, 2008, 29, 597-606.                                                               | 5.7 | 103       |
| 98  | DNA and Polylysine Adsorption and Multilayer Construction onto Cationic Lipid-Coated<br>Microbubbles. Langmuir, 2007, 23, 9401-9408.                                  | 1.6 | 127       |
| 99  | Ultrasound Microbubble Contrast Agents: Fundamentals and Application to Gene and Drug Delivery.<br>Annual Review of Biomedical Engineering, 2007, 9, 415-447.         | 5.7 | 1,089     |
| 100 | Lateral Phase Separation in Lipid-Coated Microbubbles. Langmuir, 2006, 22, 4291-4297.                                                                                 | 1.6 | 119       |
| 101 | Ultrasound Radiation Force Modulates Ligand Availability on Targeted Contrast Agents. Molecular<br>Imaging, 2006, 5, 7290.2006.00016.                                 | 0.7 | 74        |
| 102 | Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. Journal of Controlled Release, 2006, 111, 128-134.              | 4.8 | 253       |
| 103 | Effect of Microstructure on Molecular Oxygen Permeation through Condensed Phospholipid<br>Monolayers. Journal of the American Chemical Society, 2005, 127, 6524-6525. | 6.6 | 56        |
| 104 | Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.<br>Colloids and Surfaces B: Biointerfaces, 2004, 35, 209-223.        | 2.5 | 121       |
| 105 | Oxygen Permeability of Fully Condensed Lipid Monolayers. Journal of Physical Chemistry B, 2004, 108, 6009-6016.                                                       | 1.2 | 73        |
| 106 | Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging. Molecular Imaging, 2004,<br>3, 153535002004041.                                          | 0.7 | 34        |
| 107 | Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging. Molecular Imaging, 2004, 3, 135-148.                                                     | 0.7 | 159       |
| 108 | Dissolution Behavior of Lipid Monolayer-Coated, Air-Filled Microbubbles:Â Effect of Lipid Hydrophobic<br>Chain Length. Langmuir, 2002, 18, 9225-9233.                 | 1.6 | 298       |