Florenci V GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/339609/publications.pdf Version: 2024-02-01

FLOPENCI V CONZÃUEZ

#	Article	IF	CITATIONS
1	Advances in the Development of SARS-CoV-2 Mpro Inhibitors. Molecules, 2022, 27, 2523.	3.8	27
2	Mechanism of inhibition of SARS-CoV-2 M ^{pro} by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chemical Science, 2021, 12, 1433-1444.	7.4	87
3	Elucidating the Dual Mode of Action of Dipeptidyl Enoates in the Inhibition of Rhodesain Cysteine Proteases. Chemistry - A European Journal, 2021, 27, 10142-10150.	3.3	6
4	Quantum Mechanics/Molecular Mechanics Studies of the Mechanism of Cysteine Proteases Inhibition by Dipeptidyl Nitroalkenes. Chemistry - A European Journal, 2020, 26, 2002-2012.	3.3	15
5	Design, Synthesis and Evaluation of Fluorescent Analogues of Abscisic Acid. ChemistrySelect, 2020, 5, 8015-8019.	1.5	1
6	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–7. Molecules, 2020, 25, 2968.	3.8	5
7	Formal [3+2] Cycloaddition Reactions of Electron-Rich Aryl Epoxides with Alkenes under Lewis Acid Catalysis Affording Tetrasubstituted Tetrahydrofurans. Molecules, 2020, 25, 692.	3.8	0
8	Design and Synthesis of Cysteine Proteases Inhibitors. Proceedings (mdpi), 2019, 22, 86.	0.2	0
9	Three-Step Telescoped Synthesis of Monosubstituted Vicinal Diamines from Aldehydes. ACS Omega, 2019, 4, 2261-2267.	3.5	1
10	Regioselective Opening of Nitroepoxides with Unsymmetrical Diamines. Journal of Organic Chemistry, 2018, 83, 1252-1258.	3.2	13
11	Antiprotozoal and cysteine proteases inhibitory activity of dipeptidyl enoates. Bioorganic and Medicinal Chemistry, 2018, 26, 4624-4634.	3.0	27
12	Quantum mechanics/molecular mechanics studies of the mechanism of cysteine protease inhibition by peptidyl-2,3-epoxyketones. Physical Chemistry Chemical Physics, 2017, 19, 12740-12748.	2.8	17
13	Design and Synthesis of Cysteine Protease Inhibitors. Proceedings (mdpi), 2017, 1, .	0.2	Ο
14	Natural Products as Cathepsin Inhibitors. Studies in Natural Products Chemistry, 2016, , 179-213.	1.8	21
15	Dipeptidyl Nitroalkenes as Potent Reversible Inhibitors of Cysteine Proteases Rhodesain and Cruzain. ACS Medicinal Chemistry Letters, 2016, 7, 1073-1076.	2.8	42
16	Catalytic enantioselective epoxidation of nitroalkenes. Chemical Communications, 2016, 52, 10060-10063.	4.1	18
17	Preparation of Morpholines and Benzoxazines Starting from Nitroepoxides. Synthesis, 2016, 48, 2572-2580.	2.3	9
18	Dipeptidyl Enoates As Potent Rhodesain Inhibitors That Display a Dual Mode of Action. ChemMedChem, 2015, 10, 1484-1487.	3.2	20

Florenci V GonzÃilez

#	Article	IF	CITATIONS
19	Synthetic Studies on the Preparation of Alanyl Epoxysulfones as Cathepsin Cysteine Protease Electrophilic Traps. Journal of Organic Chemistry, 2015, 80, 7752-7756.	3.2	5
20	Study of the stereoselectivity of the nucleophilic epoxidation of 3-hydroxy-2-methylene esters. Tetrahedron, 2014, 70, 97-102.	1.9	20
21	Development and validation of a liquid chromatography isotope dilution mass spectrometry method for the reliable quantification of alkylphenols in environmental water samples by isotope pattern deconvolution. Journal of Chromatography A, 2014, 1328, 43-51.	3.7	18
22	A novel p38 MAPK docking-groove-targeted compound is a potent inhibitor of inflammatory hyperalgesia. Biochemical Journal, 2014, 459, 427-439.	3.7	13
23	Nitroepoxides as Versatile Precursors to 1,4-Diamino Heterocycles. Organic Letters, 2014, 16, 1752-1755.	4.6	53
24	Stereoisomerization of α-hydroxy-β-sulfenyl-α,β-dimethyl naphthoquinones controlled by nonbonded sulfur–oxygen interactions. Tetrahedron, 2013, 69, 2098-2101.	1.9	2
25	Fast methodology for the reliable determination of nonylphenol in water samples by minimal labeling isotope dilution mass spectrometry. Journal of Chromatography A, 2013, 1301, 19-26.	3.7	19
26	Dynamic Kinetic Asymmetric Ring-Opening/Reductive Amination Sequence of Racemic Nitroepoxides with Chiral Amines: Enantioselective Synthesis of Chiral Vicinal Diamines. Journal of Organic Chemistry, 2013, 78, 5717-5722.	3.2	25
27	Radical Mechanism in the Elimination of 2-Arylsulfinyl Esters. Journal of Organic Chemistry, 2012, 77, 5191-5197.	3.2	13
28	Regioselective Ring Opening and Isomerization Reactions of 3,4-Epoxyesters Catalyzed by Boron Trifluoride. Organic Letters, 2011, 13, 3856-3859.	4.6	31
29	Stereoisomerization of β-Hydroxy-α-sulfenyl-γ-butyrolactones Controlled by Two Concomitant 1,4-Type Nonbonded Sulfurâ^Oxygen Interactions As Analyzed by X-ray Crystallography. Journal of Organic Chemistry, 2010, 75, 5888-5894.	3.2	40
30	Highly stereoselective epoxidation of O-protected 3-hydroxy-1-nitroalkenes. Tetrahedron, 2009, 65, 8362-8366.	1.9	12
31	Amidation through carbamates. Tetrahedron Letters, 2009, 50, 2653-2655.	1.4	5
32	Influence of the Gas Atmosphere on the Deprotection of (Z)-γ -Hydroxy- α , β-Unsaturated Esters. Letters in Organic Chemistry, 2009, 6, 504-506.	0.5	1
33	Highly Stereoselective Epoxidation of α-Methyl-γ-hydroxy-α,β-unsaturated Esters: Rationalization and Synthetic Applications. Journal of Organic Chemistry, 2007, 72, 6614-6617.	3.2	34
34	Dipeptidyl-α,β-epoxyesters as potent irreversible inhibitors of the cysteine proteases cruzain and rhodesain. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6697-6700.	2.2	22
35	Diastereoselective synthesis of γ-hydroxy α,β-epoxyesters and their conversion into β-hydroxy α-sulfenyl γ-butyrolactones. Tetrahedron, 2006, 62, 11112-11123.	1.9	16
36	Asymmetric Epoxidations of Poor-Electron Olefins. ChemInform, 2006, 37, no.	0.0	0

#	Article	IF	CITATIONS
37	Diastereoselectivity in the epoxidation of γ-hydroxy α,β-unsaturated esters: temperature and solvent effect. Tetrahedron Letters, 2004, 45, 5359-5361.	1.4	13
38	Facile synthesis of first generation ferrocene dendrimers by a convergent approach using ditopic conjugated dendronsElectronic supplementary information (ESI) available: molecular structure of 2. See http://www.rsc.org/suppdata/nj/b1/b108142j/. New Journal of Chemistry, 2002, 26, 291-297.	2.8	32
39	Stereoselective Synthesis of the Naturally Occurring Lactones (â~')-Osmundalactone and (â~')-Muricatacine Using Ring-Closing Metathesis. European Journal of Organic Chemistry, 2002, 2002, 2649.	2.4	61
40	Stereoselective synthesis of (â^)-cytoxazone. Tetrahedron: Asymmetry, 2002, 13, 1005-1010.	1.8	30
41	Influence of the protecting groups on the syn/anti stereoselectivity of boron aldol additions with erythrulose derivatives. A theoretical and experimental study. Tetrahedron, 2002, 58, 9697-9707.	1.9	12
42	Chlorodicyclohexylborane-Mediated Aldol Additions of α,αâ€~-Dioxygenated Ketones. Organic Letters, 2001, 3, 901-904.	4.6	11
43	Stereoselective allylations of erythrulose derivatives under anhydrous conditions. Tetrahedron: Asymmetry, 2001, 12, 1417-1429.	1.8	12
44	Stereoselective synthesis of syn-α-methyl-β-hydroxy esters. Tetrahedron: Asymmetry, 2000, 11, 3211-3220.	1.8	8
45	A Synthetic Model for the [4+2] Cycloaddition in the Biosynthesis of the Brevianamides, Paraherquamides, and Related Compounds. Tetrahedron, 2000, 56, 6345-6358.	1.9	38
46	Aldol Reactions with Erythrulose Derivatives: Stereoselective Synthesis of Differentially Protected syn -α,β-Dihydroxy Esters. Tetrahedron, 2000, 56, 677-683.	1.9	30
47	Synthetic studies on asperparaline A.Synthesis of the spirosuccinimide ring system. Tetrahedron Letters, 1999, 40, 4519-4522.	1.4	29
48	Boron aldol additions with erythrulose derivatives: dependence of stereoselectivity on the type of protecting group. Tetrahedron Letters, 1999, 40, 6845-6848.	1.4	14
49	Stereoselective synthesis of $\hat{i}\pm$ -substituted serines from protected erythrulose oximes. Tetrahedron: Asymmetry, 1998, 9, 1703-1712.	1.8	25
50	Design and synthesis of dipeptidyl α′,β′-epoxy ketones, potent irreversible inhibitors of the cysteine protease cruzain. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2809-2812.	2.2	47
51	Diastereoselectivity in Organometallic Additions to the Carbonyl Group of Protected Erythrulose Derivatives. Journal of Organic Chemistry, 1998, 63, 698-707.	3.2	31
52	Diastereoselectivity of the reactions of organometallic reagents with protected d- and l-erythrulose 1,3-O-ethylidene acetals. Tetrahedron: Asymmetry, 1997, 8, 559-577.	1.8	16
53	Diastereoselective additions of organolithium reagents to the Cî—»N bond of protected erythrulose oxime ethers. Synthesis of enantiopure α,α-disubstituted α-aminiacids. Tetrahedron Letters, 1997, 38, 1841-1844.	1.4	40
54	A Theoretical Study of Addition of Organomagnesium Reagents to Chiral α-Alkoxy Carbonyl Compounds. Journal of Organic Chemistry, 1996, 61, 3467-3475.	3.2	25

#	Article	IF	CITATIONS
55	Synthesis of Protected Enantiopure Erythrulose Derivatives. Liebigs Annalen, 1996, 1996, 1801-1810.	0.8	23
56	Synthesis of (E)-2,6-dimethyl-6-hydroxyocta-2,7-dienoic acid and the corresponding amide ("acacialactamâ€) in optically active form. Tetrahedron, 1995, 51, 2755-2762.	1.9	10
57	Highly diastereoselective additions of organometallic reagents to 1-O-silylated 3,4-Di-O-benzyl-L-erythrulose derivatives. Tetrahedron: Asymmetry, 1993, 4, 1799-1802.	1.8	15
58	Diastereoselective synthesis of enantiomeric tertiary alcohols via nucleophilic additions to protected D- and L-erythrulose derivatives. Tetrahedron: Asymmetry, 1992, 3, 1511-1514.	1.8	15