Jacob I Sznajder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3396031/publications.pdf

Version: 2024-02-01

53794 54911 8,264 136 45 84 citations h-index g-index papers 154 154 154 9968 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Editorial: Elevated Carbon Dioxide Sensing and Physiologic Effects. Frontiers in Physiology, 2022, 13, 894222.	2.8	O
2	The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. Journal of Clinical Investigation, $2021,131,\ldots$	8.2	86
3	Elevated CO ₂ modulates airway contractility. Interface Focus, 2021, 11, 20200021.	3.0	8
4	Resetting proteostasis with ISRIB promotes epithelial differentiation to attenuate pulmonary fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
5	Dysregulation of ion transport in the lung epithelium infected with SARS-CoV-2. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L1183-L1185.	2.9	3
6	Transcriptional Profiling of Monocytes Deficient in Nuclear Orphan Receptors NR4A2 and NR4A3 Reveals Distinct Signalling Roles Related to Antigen Presentation and Viral Response. Frontiers in Immunology, 2021, 12, 676644.	4.8	11
7	Maturation of the Na,K-ATPase in the Endoplasmic Reticulum in Health and Disease. Journal of Membrane Biology, 2021, 254, 447-457.	2.1	10
8	Activation of p21 limits acute lung injury and induces early senescence after acid aspiration and mechanical ventilation. Translational Research, 2021, 233, 104-116.	5.0	14
9	TRAF2 Is a Novel Ubiquitin E3 Ligase for the Na,K-ATPase β-Subunit That Drives Alveolar Epithelial Dysfunction in Hypercapnia. Frontiers in Cell and Developmental Biology, 2021, 9, 689983.	3.7	2
10	Recovering from a pandemic: pulmonary fibrosis after SARS-CoV-2 infection. European Respiratory Review, 2021, 30, 210194.	7.1	43
11	Hypercapnia Regulates Gene Expression and Tissue Function. Frontiers in Physiology, 2020, 11, 598122.	2.8	8
12	Impaired phagocytic function in CX3CR1 ⁺ tissueâ€resident skeletal muscle macrophages prevents muscle recovery after influenza A virusâ€induced pneumonia in old mice. Aging Cell, 2020, 19, e13180.	6.7	21
13	Epithelial cell–specific loss of function of <i>Miz1</i> causes a spontaneous COPD-like phenotype and up-regulates <i>Ace2</i> expression in mice. Science Advances, 2020, 6, eabb7238.	10.3	16
14	Targeting the Linear Ubiquitin Assembly Complex to Modulate the Host Response and Improve Influenza A Virus Induced Lung Injury. Archivos De Bronconeumologia, 2020, 56, 586-591.	0.8	0
15	Hypercapnia: An Aggravating Factor in Asthma. Journal of Clinical Medicine, 2020, 9, 3207.	2.4	7
16	Targeting the Linear Ubiquitin Assembly Complex to Modulate the Host Response and Improve Influenza A Virus Induced Lung Injury. Archivos De Bronconeumologia, 2020, 56, 586-591.	0.8	2
17	Hypercapnia Impairs Na,K-ATPase Function by Inducing Endoplasmic Reticulum Retention of the \hat{l}^2 -Subunit of the Enzyme in Alveolar Epithelial Cells. International Journal of Molecular Sciences, 2020, 21, 1467.	4.1	13
18	High CO ₂ Levels Impair Lung Wound Healing. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 244-254.	2.9	17

#	Article	IF	CITATIONS
19	Elevated CO2 Levels Delay Skeletal Muscle Repair by Increasing Fatty Acid Oxidation. Frontiers in Physiology, 2020, 11, 630910.	2.8	11
20	Linear ubiquitin assembly complex regulates lung epithelialâ€"driven responses during influenza infection. Journal of Clinical Investigation, 2020, 130, 1301-1314.	8.2	20
21	Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L1094-L1106.	2.9	28
22	Elevated CO2 regulates the Wnt signaling pathway in mammals, Drosophila melanogaster and Caenorhabditis elegans. Scientific Reports, 2019, 9, 18251.	3.3	24
23	Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1517-1536.	5.6	866
24	Influenza A Virus Infection Induces Muscle Wasting via IL-6 Regulation of the E3 Ubiquitin Ligase Atrogin-1. Journal of Immunology, 2019, 202, 484-493.	0.8	35
25	Metformin Targets Mitochondrial Electron Transport to Reduce Air-Pollution-Induced Thrombosis. Cell Metabolism, 2019, 29, 335-347.e5.	16.2	75
26	Ubiquitin-proteasome signaling in lung injury. Translational Research, 2018, 198, 29-39.	5.0	9
27	Future Research Directions in Pneumonia. NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 256-263.	5.6	54
28	JNK2 up-regulates hypoxia-inducible factors and contributes to hypoxia-induced erythropoiesis and pulmonary hypertension. Journal of Biological Chemistry, 2018, 293, 271-284.	3.4	14
29	Inflammatory pathways are upregulated in the nasal epithelium in patients with idiopathic pulmonary fibrosis. Respiratory Research, 2018, 19, 233.	3.6	13
30	Hypercapnia increases airway smooth muscle contractility via caspase-7–mediated miR-133a–RhoA signaling. Science Translational Medicine, 2018, 10, .	12.4	39
31	Hypercapnia Alters Expression of Immune Response, Nucleosome Assembly and Lipid Metabolism Genes in Differentiated Human Bronchial Epithelial Cells. Scientific Reports, 2018, 8, 13508.	3.3	30
32	Effects of hypercapnia on the lung. Journal of Physiology, 2017, 595, 2431-2437.	2.9	41
33	Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Medicine, 2017, 43, 200-208.	8.2	168
34	Metabolism and Skeletal Muscle Homeostasis in Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 28-34.	2.9	18
35	The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1492-1500.	3.6	55
36	Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. Journal of Experimental Medicine, 2017, 214, 2387-2404.	8.5	755

#	Article	IF	Citations
37	Stretching to Understand How Proteostasis and the Unfolded Protein Response Regulate Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 143-144.	2.9	2
38	HIF and HOIL-1L–mediated PKCζ degradation stabilizes plasma membrane Na,K-ATPase to protect against hypoxia-induced lung injury. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10178-E10186.	7.1	48
39	Downregulation of PKCζ/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cellular Signalling, 2017, 38, 49-59.	3.6	34
40	Tratamiento antigripal: f $ ilde{A}_i$ rmacos actualmente utilizados y nuevos agentes en desarrollo. Archivos De Bronconeumologia, 2017, 53, 19-26.	0.8	35
41	Inflammatory Responses Regulating Alveolar Ion Transport during Pulmonary Infections. Frontiers in Immunology, 2017, 8, 446.	4.8	46
42	FXYD5 Is an Essential Mediator of the Inflammatory Response during Lung Injury. Frontiers in Immunology, 2017, 8, 623.	4.8	27
43	Gas Exchange Disturbances Regulate Alveolar Fluid Clearance during Acute Lung Injury. Frontiers in Immunology, 2017, 8, 757.	4.8	36
44	Disease Specific Signatures Identified by RNAâ€seq of Sorted Lung Cellular Populations. FASEB Journal, 2017, 31, 656.4.	0.5	0
45	Focused Screening Identifies Evoxine as a Small Molecule That Counteracts CO2-Induced Immune Suppression. Journal of Biomolecular Screening, 2016, 21, 363-371.	2.6	3
46	FXYD5 <i>O-</i> glycosylated ectodomain impairs adhesion by disrupting cell-cell <i>trans</i> -dimerization of Na,K-ATPase β1 subunits. Journal of Cell Science, 2016, 129, 2394-406.	2.0	19
47	Identification of <i>Drosophila</i> Zfh2 as a Mediator of Hypercapnic Immune Regulation by a Genome-Wide RNA Interference Screen. Journal of Immunology, 2016, 196, 655-667.	0.8	18
48	Role of Linear Ubiquitination in Health and Disease. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 761-768.	2.9	14
49	Pleural Hypercarbia After Lung Surgery Is Associated With Persistent Alveolopleural Fistulae. Chest, 2016, 149, 220-227.	0.8	19
50	Suppression of von Hippel-Lindau Protein in Fibroblasts Protects against Bleomycin-Induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 728-739.	2.9	7
51	Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection. Journal of Clinical Investigation, 2016, 126, 1566-1580.	8.2	99
52	Blue Journal Conference. Aging and Susceptibility to Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 261-269.	5.6	149
53	High CO ₂ Leads to Na,K-ATPase Endocytosis via c-Jun Amino-Terminal Kinase-Induced LMO7b Phosphorylation. Molecular and Cellular Biology, 2015, 35, 3962-3973.	2.3	29
54	Personalized Respiratory Medicine: Exploring the Horizon, Addressing the Issues. Summary of a BRN-AJRCCM Workshop Held in Barcelona on June 12, 2014. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 391-401.	5.6	61

#	Article	IF	CITATIONS
55	miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes and Development, 2015, 29, 732-745.	5.9	182
56	Muscle Dysfunction in Patients with Lung Diseases. A Growing Epidemic. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 616-619.	5.6	32
57	High CO2 Levels Cause Skeletal Muscle Atrophy via AMP-activated Kinase (AMPK), FoxO3a Protein, and Muscle-specific Ring Finger Protein 1 (MuRF1). Journal of Biological Chemistry, 2015, 290, 9183-9194.	3.4	101
58	Decreased CXCL12 is associated with impaired alveolar epithelial cell migration and poor lung healing after lung resection. Surgery, 2015, 158, 1073-1082.	1.9	9
59	Pleural Gas Analysis for Detection of Alveolopleural Fistulae. Annals of Thoracic Surgery, 2015, 99, 2179-2182.	1.3	4
60	Lung Edema Clearance: Relevance to Patients with Lung Injury. Rambam Maimonides Medical Journal, 2015, 6, e0025.	1.0	8
61	Malfolded Protein Structure and Proteostasis in Lung Diseases. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 96-103.	5.6	57
62	The Response to High CO2 Levels Requires the Neuropeptide Secretion Component HID-1 to Promote Pumping Inhibition. PLoS Genetics, 2014, 10, e1004529.	3.5	9
63	Calcium releaseâ€activated calcium (CRAC) channels mediate the β ₂ â€adrenergic regulation of Na,Kâ€ATPase. FEBS Letters, 2014, 588, 4686-4693.	2.8	6
64	Carbon dioxide-sensing in organisms and its implications for human disease. Cellular and Molecular Life Sciences, 2014, 71, 831-845.	5.4	107
65	HOIL-1L Functions as the PKCζ Ubiquitin Ligase to Promote Lung Tumor Growth. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 688-698.	5.6	34
66	Intratracheal administration of influenza virus is superior to intranasal administration as a model of acute lung injury. Journal of Virological Methods, 2014, 209, 116-120.	2.1	26
67	Suppression of inflammation and acute lung injury by Miz1 via repression of C/EBP-δ. Nature Immunology, 2013, 14, 461-469.	14.5	71
68	The Emerging Role of the Ubiquitin Proteasome in Pulmonary Biology and Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 530-537.	5.6	39
69	Healthcare Disparities in Patients with Acute Respiratory Distress Syndrome. Toward Equity. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 631-632.	5.6	21
70	Protein Kinase A-Iα Regulates Na,K-ATPase Endocytosis in Alveolar Epithelial Cells Exposed to High CO ₂ Concentrations. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 626-634.	2.9	36
71	Hypercapnia Impairs Lung Neutrophil Function and Increases Mortality in Murine <i>Pseudomonas</i> Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 821-828.	2.9	91
72	Epigenetic regulation of muscle phenotype and adaptation: a potential role in COPD muscle dysfunction. Journal of Applied Physiology, 2013, 114, 1263-1272.	2.5	37

#	Article	IF	CITATIONS
73	Hypercapnia: A Nonpermissive Environment for the Lung. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 417-421.	2.9	66
74	Ubiquitination and Proteolysis in Acute Lung Injury. Chest, 2012, 141, 763-771.	0.8	37
75	Personalized Medicine. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 945-947.	5.6	7
76	Evolutionary Conserved Role of c-Jun-N-Terminal Kinase in CO2-Induced Epithelial Dysfunction. PLoS ONE, 2012, 7, e46696.	2.5	42
77	Hypoxia Leads to Na,K-ATPase Downregulation via Ca ²⁺ Release-Activated Ca ²⁺ Channels and AMPK Activation. Molecular and Cellular Biology, 2011, 31, 3546-3556.	2.3	127
78	Elevated CO2 Levels Cause Mitochondrial Dysfunction and Impair Cell Proliferation. Journal of Biological Chemistry, 2011, 286, 37067-37076.	3.4	145
79	Extracellular signalâ€regulated kinase (ERK) participates in the hypercapniaâ€induced Na,Kâ€ATPase downregulation. FEBS Letters, 2010, 584, 3985-3989.	2.8	42
80	Elevated CO ₂ selectively inhibits interleukinâ€6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. FASEB Journal, 2010, 24, 2178-2190.	0.5	108
81	Role of kinesin light chainâ€2 of kinesinâ€1 in the traffic of Na,Kâ€ATPaseâ€containing vesicles in alveolar epithelial cells. FASEB Journal, 2010, 24, 374-382.	0.5	17
82	E3 ubiquitin ligase Mule ubiquitinates Miz1 and is required for TNFα-induced JNK activation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13444-13449.	7.1	43
83	Insulin regulates alveolar epithelial function by inducing Na+/K+-ATPase translocation to the plasma membrane in a process mediated by the action of Akt. Journal of Cell Science, 2010, 123, 1343-1351.	2.0	27
84	Role of Ubiquitination in Na,K-ATPase Regulation during Lung Injury. Proceedings of the American Thoracic Society, 2010, 7, 65-70.	3.5	32
85	Myosin-Va restrains the trafficking of Na+/K+-ATPase-containing vesicles in alveolar epithelial cells. Journal of Cell Science, 2009, 122, 3915-3922.	2.0	27
86	Elevated CO ₂ levels affect development, motility, and fertility and extend life span in <i>Caenorhabditis elegans</i> Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4024-4029.	7.1	60
87	Elevated CO ₂ suppresses specific Drosophila innate immune responses and resistance to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18710-18715.	7.1	94
88	Endothelin-1 Impairs Alveolar Epithelial Function via Endothelial ET _B Receptor. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 113-122.	5.6	37
89	Ubiquitination Participates in the Lysosomal Degradation of Na,K-ATPase in Steady-State Conditions. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 671-679.	2.9	27
90	Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1120-L1130.	2.9	189

#	Article	IF	Citations
91	α1-AMP-Activated Protein Kinase Regulates Hypoxia-Induced Na,K-ATPase Endocytosis via Direct Phosphorylation of Protein Kinase Cζ. Molecular and Cellular Biology, 2009, 29, 3455-3464.	2.3	107
92	Elevated levels of von Hippelâ€Lindau protein in human and mouse fibrotic lungs. FASEB Journal, 2009, 23, 1025.2.	0.5	0
93	Hypoxiaâ€mediated Naâ€Kâ€ATPase degradation requires von Hippel Lindau protein. FASEB Journal, 2008, 22, 1335-1342.	0.5	35
94	Carbonic Anhydrase II and Alveolar Fluid Reabsorption during Hypercapnia. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 32-37.	2.9	34
95	Chapter 7 Regulation of Na,K-ATPase by Reactive Oxygen Species. Current Topics in Membranes, 2008, 61, 131-146.	0.9	0
96	AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis. Journal of Clinical Investigation, 2008, 118, 752-62.	8.2	146
97	High CO2 Levels Impair Alveolar Epithelial Function Independently of pH. PLoS ONE, 2007, 2, e1238.	2.5	108
98	Phosphorylation and ubiquitination are necessary for Na,K-ATPase endocytosis during hypoxia. Cellular Signalling, 2007, 19, 1893-1898.	3.6	40
99	Alveolar epithelium and Na,K-ATPase in acute lung injury. Intensive Care Medicine, 2007, 33, 1243-1251.	8.2	130
100	Regulation of Na,K-ATPase during acute lung injury. Journal of Bioenergetics and Biomembranes, 2007, 39, 391-395.	2.3	34
101	Hypoxic Inhibition of Alveolar Fluid Reabsorption. Advances in Experimental Medicine and Biology, 2007, 618, 159-168.	1.6	26
102	Ambient particulate matter accelerates coagulation via an IL-6–dependent pathway. Journal of Clinical Investigation, 2007, 117, 2952-2961.	8.2	256
103	The Alveolar–Epithelial Barrier: A Target for Potential Therapy. Clinics in Chest Medicine, 2006, 27, 655-669.	2.1	41
104	Phosphorylation of Adaptor Protein–2 μ2 Is Essential for Na+,K+-ATPase Endocytosis in Response to Either G Protein–Coupled Receptor or Reactive Oxygen Species. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 127-132.	2.9	42
105	Alveolar fluid reabsorption is increased in rats with compensated heart failure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L1094-L1100.	2.9	14
106	Hypoxia-Mediated Degradation of Na,K-ATPase via Mitochondrial Reactive Oxygen Species and the Ubiquitin-Conjugating System. Circulation Research, 2006, 98, 1314-1322.	4.5	105
107	Na,Kâ€ATPase α1â€subunit dephosphorylation by protein phosphatase 2A is necessary for its recruitment to the plasma membrane. FASEB Journal, 2006, 20, 2618-2620.	0.5	45
108	Hypoxia-induced alveolar epithelial dysfunction. Journal of Organ Dysfunction, 2006, 2, 244-249.	0.3	4

#	Article	IF	CITATIONS
109	Endothelin decreases lung edema clearance and Na,Kâ€ATPase activity in alveolar epithelial cells via ETâ€B receptor and Nitric Oxide generation. FASEB Journal, 2006, 20, .	0.5	1
110	Mechanisms of pulmonary edema clearance. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L685-L695.	2.9	162
111	Interdependency of \hat{I}^2 -Adrenergic Receptors and CFTR in Regulation of Alveolar Active Na + Transport. Circulation Research, 2005, 96, 999-1005.	4.5	77
112	Gene Transfer of the Na+,K+-ATPase \hat{I}^21 Subunit Using Electroporation Increases Lung Liquid Clearance. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 204-211.	5.6	70
113	The Dopamine Paradox in Lung and Kidney Epithelia. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 432-437.	2.9	55
114	Leukotriene D4Activates Alveolar Epithelial Na,K-ATPase and Increases Alveolar Fluid Clearance. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 407-412.	5.6	37
115	Scorpion Venom Decreases Lung Liquid Clearance in Rats. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 1064-1067.	5.6	30
116	Analysis of Na+,K+-ATPase Motion and Incorporation into the Plasma Membrane in Response to G Protein–coupled Receptor Signals in Living Cells. Molecular Biology of the Cell, 2003, 14, 1149-1157.	2.1	53
117	The GTP-binding Protein RhoA Mediates Na,K-ATPase Exocytosis in Alveolar Epithelial Cells. Molecular Biology of the Cell, 2003, 14, 3888-3897.	2.1	42
118	Na,K-ATPase Gene Transfer Increases Liquid Clearance during Ventilation-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 1445-1448.	5.6	32
119	Mechanisms of pulmonary edema clearance during acute hypoxemic respiratory failure: Role of the Na,K-ATPase. Critical Care Medicine, 2003, 31, S248-S252.	0.9	47
120	Î ² -Adrenergic agonists regulate Na-K-ATPase via p70 ^{S6k} . American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L802-L807.	2.9	28
121	Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-ζ. Journal of Clinical Investigation, 2003, 111, 1057-1064.	8.2	244
122	Dopamine-induced Exocytosis of Na,K-ATPase Is Dependent on Activation of Protein Kinase C-ε and -δ. Molecular Biology of the Cell, 2002, 13, 1381-1389.	2.1	90
123	Na,K-ATPase Overexpression Improves Alveolar Fluid Clearance in a Rat Model of Elevated Left Atrial Pressure. Circulation, 2002, 105, 497-501.	1.6	72
124	Cyclic stretch activates ERK1/2 via G proteins and EGFR in alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L883-L891.	2.9	105
125	Severe status asthmaticus: Management with permissive hypercapnia and inhalation anesthesia. Critical Care Medicine, 2002, 30, 477-480.	0.9	84
126	Dopamine activates ERKs in alveolar epithelial cells via Ras-PKC-dependent and Grb2/Sos-independent mechanisms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L1099-L1107.	2.9	26

#	Article	IF	CITATIONS
127	Catecholamines increase lung edema clearance in rats with increased left atrial pressure. Journal of Applied Physiology, 2001, 90, 1088-1094.	2.5	46
128	Dopamine regulates Na-K-ATPase in alveolar epithelial cells via MAPK-ERK-dependent mechanisms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L79-L85.	2.9	56
129	\hat{l}^2 2 -Adrenergic Receptor Overexpression Increases Alveolar Fluid Clearance and Responsiveness to Endogenous Catecholamines in Rats. Circulation Research, 2001, 89, 907-914.	4.5	99
130	Stretching the lung and programmed cell death. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L1003-L1004.	2.9	11
131	Continuous enteral nutrition attenuates pulmonary edema in rats exposed to 100% oxygen. Journal of Applied Physiology, 2000, 89, 1759-1765.	2.5	17
132	Adenovirus-Mediated Transfer of an Na+/K+-ATPase \hat{l}^2 1Subunit Gene Improves Alveolar Fluid Clearance and Survival in Hyperoxic Rats. Human Gene Therapy, 2000, 11, 2231-2242.	2.7	99
133	A novel role for protein phosphatase 2A in the dopaminergic regulation of Na,K-ATPase. FEBS Letters, 2000, 481, 217-220.	2.8	38
134	\hat{l}^2 -Agonists regulate Na,K-ATPase via novel MAPK/ERK and rapamycin-sensitive pathways. FEBS Letters, 2000, 486, 310-314.	2.8	44
135	Isoproterenol increases Na ⁺ -K ⁺ -ATPase activity by membrane insertion of α-subunits in lung alveolar cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L20-L27.	2.9	107
136	Epidermal growth factor increases lung liquid clearance in rat lungs. Journal of Applied Physiology, 1998, 85, 1004-1010.	2.5	31