
Mani Rajkumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3395550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 2010, 28, 142-149.	4.9	927
2	Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 2012, 30, 1562-1574.	6.0	785
3	Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 2016, 174, 14-25.	3.8	490
4	Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere, 2009, 77, 153-160.	4.2	351
5	Inoculation of endophytic bacteria on host and non-host plants—Effects on plant growth and Ni uptake. Journal of Hazardous Materials, 2011, 195, 230-237.	6.5	312
6	Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere, 2008, 71, 834-842.	4.2	300
7	The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Journal of Environmental Management, 2015, 156, 62-69.	3.8	251
8	Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of Environmental Management, 2020, 254, 109779.	3.8	248
9	Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 2009, 90, 831-837.	3.8	247
10	Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 2006, 62, 741-748.	4.2	234
11	Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. Journal of Hazardous Materials, 2016, 320, 36-44.	6.5	205
12	Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. Journal of Hazardous Materials, 2009, 166, 1154-1161.	6.5	194
13	Climate change driven plant–metal–microbe interactions. Environment International, 2013, 53, 74-86.	4.8	188
14	Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresource Technology, 2008, 99, 3491-3498.	4.8	177
15	Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. Journal of Hazardous Materials, 2019, 379, 120813.	6.5	146
16	Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere, 2013, 93, 1386-1392.	4.2	133
17	Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Critical Reviews in Biotechnology, 2009, 29, 120-130.	5.1	129
18	Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp Chemosphere, 2009, 75, 719-725.	4.2	127

Mani Rajkumar

#	Article	IF	CITATIONS
19	Characterization of metalâ€resistant plantâ€growth promoting <i>Bacillus weihenstephanensis</i> isolated from serpentine soil in Portugal. Journal of Basic Microbiology, 2008, 48, 500-508.	1.8	101
20	Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. Journal of Environmental Management, 2013, 128, 973-980.	3.8	96
21	Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere, 2017, 185, 75-85.	4.2	93
22	Characterization of a Novel Cr6+ Reducing Pseudomonas sp. with Plant Growth–Promoting Potential. Current Microbiology, 2005, 50, 266-271.	1.0	92
23	Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Frontiers in Plant Science, 2014, 5, 757.	1.7	79
24	Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere, 2020, 244, 125521.	4.2	75
25	Preparation, characterization, bioactive and metal uptake studies of alginate/phosphorylated chitin blend films. International Journal of Biological Macromolecules, 2009, 44, 107-111.	3.6	67
26	Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium <i>Bacillus</i> sp. SC2b and Its Role in Rhizoremediation. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 931-944.	1.1	67
27	Synthesis and characterization of metal-containing polyurethanes with antibacterial activity. Journal of Applied Polymer Science, 2002, 85, 1194-1206.	1.3	62
28	Screening of bacterial antagonists for biological control ofPhytophthora blight of pepper. Journal of Basic Microbiology, 2005, 45, 55-63.	1.8	55
29	Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses. Environmental Technology and Innovation, 2022, 25, 102154.	3.0	52
30	Valorization of agricultural residues: Different biorefinery routes. Journal of Environmental Chemical Engineering, 2021, 9, 105435.	3.3	50
31	Synergistic effect of ACC deaminase producing Pseudomonas sp. TR15a and siderophore producing Bacillus aerophilus TR15c for enhanced growth and copper accumulation in Helianthus annuus L. Chemosphere, 2021, 276, 130038.	4.2	47
32	Alleviation of environmental stress in plants: The role of beneficial <i>Pseudomonas</i> spp Critical Reviews in Environmental Science and Technology, 2017, 47, 372-407.	6.6	45
33	Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper. South African Journal of Botany, 2008, 74, 268-273.	1.2	44
34	Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus. Chemosphere, 2021, 266, 128983.	4.2	42
35	Synthesis, characterization, and antibacterial activity of metal-containing polyurethanes. Journal of Applied Polymer Science, 2004, 91, 288-295.	1.3	40
36	Synthesis of water-soluble and bio-taggable CdSe@ZnS quantum dots. RSC Advances, 2018, 8, 8516-8527.	1.7	30

Mani Rajkumar

#	Article	IF	CITATIONS
37	Bioactive and metal uptake studies of carboxymethyl chitosan-graft-d-glucuronic acid membranes for tissue engineering and environmental applications. International Journal of Biological Macromolecules, 2009, 45, 135-139.	3.6	27
38	Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. Journal of Environmental Management, 2021, 289, 112553.	3.8	22
39	Assessment of potentially reactive pools of aluminum in Andisols using a five-step sequential extraction procedure. Soil Science and Plant Nutrition, 2011, 57, 500-507.	0.8	18
40	Cellulosimicrobium funkei strain AR6 alleviate Cr(VI) toxicity in Lycopersicon esculentum by regulating the expression of growth responsible, stress tolerant and metal transporter genes. Rhizosphere, 2021, 18, 100351.	1.4	12
41	Molecular Analysis of Korean Isolate of Barley Yellow Mosaic Virus. Virus Genes, 2006, 32, 171-176.	0.7	10
42	Synergism of Industrial and Agricultural Waste as a Suitable Carrier Material for Developing Potential Biofertilizer for Sustainable Agricultural Production of Eggplant. Horticulturae, 2022, 8, 444.	1.2	8
43	Detection of Soil Organic Nitrogen in Xylem Sap Collected from Nonmycorrhizal Plants using an Immunological Technique. Communications in Soil Science and Plant Analysis, 2012, 43, 2669-2678.	0.6	0