Bhanushree Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/339529/publications.pdf

Version: 2024-02-01

933447 996975 19 272 10 15 citations g-index h-index papers 22 22 22 365 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2): A Review on Pathophysiology, Diagnosis, and Investigational Therapeuti. Current Medicinal Chemistry, 2021, 28, 8559-8594.	2.4	O
2	Glycosylated-imidazole aldoximes as reactivators of pesticides inhibited AChE: Synthesis and in-vitro reactivation study. Environmental Toxicology and Pharmacology, 2020, 80, 103454.	4.0	3
3	Nutraceuticals for Antiaging. , 2019, , 383-392.		2
4	Plant and Food Derived Immunomodulators as Nutraceuticals for Performance Enhancing Activities., 2019,, 593-601.		0
5	Nigella sativa. , 2019, , 91-101.		O
6	Facile and visual detection of acetylcholinesterase inhibitors by carbon quantum dots. New Journal of Chemistry, 2019, 43, 9924-9933.	2.8	16
7	Synthesis and in-vitro reactivation screening of imidazolium aldoximes as reactivators of sarin and VX-inhibited human acetylcholinesterase (hAChE). Chemico-Biological Interactions, 2016, 259, 85-92.	4.0	16
8	Oxime-mediated <i>in vitro </i> reactivation kinetic analysis of organophosphates-inhibited human and electric eel acetylcholinesterase. Toxicology Mechanisms and Methods, 2016, 26, 319-326.	2.7	6
9	Degradation of Organophosphate Pesticides Using Pyridinium Based Functional Surfactants. ACS Sustainable Chemistry and Engineering, 2016, 4, 6962-6973.	6.7	31
	Sustainable Chemistry and Engineering, 2010, 1, 0702 0775.		
10	Thymoquinone., 2016,, 541-550.		9
10		2.4	9 53
	Thymoquinone. , 2016, , 541-550. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare	2.4	
11	Thymoquinone., 2016,, 541-550. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review. Mini-Reviews in Medicinal Chemistry, 2015, 15, 58-72. Metallosurfactant Aggregates as Catalysts for the Hydrolytic Cleavage of Carboxylate and Phosphate		53
11 12	Thymoquinone., 2016,, 541-550. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review. Mini-Reviews in Medicinal Chemistry, 2015, 15, 58-72. Metallosurfactant Aggregates as Catalysts for the Hydrolytic Cleavage of Carboxylate and Phosphate Esters. Current Organocatalysis, 2015, 3, 6-23. From α-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxamate ion	0.5	53 15
11 12 13	Thymoquinone., 2016,, 541-550. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review. Mini-Reviews in Medicinal Chemistry, 2015, 15, 58-72. Metallosurfactant Aggregates as Catalysts for the Hydrolytic Cleavage of Carboxylate and Phosphate Esters. Current Organocatalysis, 2015, 3, 6-23. From î±-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxamate ion towards esterolytic reactions in micelles. Organic and Biomolecular Chemistry, 2015, 13, 2827-2848. ACID DISSOCIATION CONSTANTS AND MOLECULAR DESCRIPTORS OF SOME XYLENE LINKED BISPYRIDINIUM	0.5	53 15 27
11 12 13	Thymoquinone., 2016, , 541-550. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review. Mini-Reviews in Medicinal Chemistry, 2015, 15, 58-72. Metallosurfactant Aggregates as Catalysts for the Hydrolytic Cleavage of Carboxylate and Phosphate Esters. Current Organocatalysis, 2015, 3, 6-23. From α-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxamate ion towards esterolytic reactions in micelles. Organic and Biomolecular Chemistry, 2015, 13, 2827-2848. ACID DISSOCIATION CONSTANTS AND MOLECULAR DESCRIPTORS OF SOME XYLENE LINKED BISPYRIDINIUM OXIMES. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2015, 84, 94-103.	0.5 2.8 0.5	53 15 27 1
11 12 13 14	Thymoquinone., 2016, , 541-550. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review. Mini-Reviews in Medicinal Chemistry, 2015, 15, 58-72. Metallosurfactant Aggregates as Catalysts for the Hydrolytic Cleavage of Carboxylate and Phosphate Esters. Current Organocatalysis, 2015, 3, 6-23. From α-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxamate ion towards esterolytic reactions in micelles. Organic and Biomolecular Chemistry, 2015, 13, 2827-2848. ACID DISSOCIATION CONSTANTS AND MOLECULAR DESCRIPTORS OF SOME XYLENE LINKED BISPYRIDINIUM OXIMES. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2015, 84, 94-103. In vitro reactivation kinetics of paraoxon- and DFP-inhibited electric eel AChE using mono- and bis-pyridinium oximes. Archives of Toxicology, 2014, 88, 381-390. Interactions between xylene-linked carbamoyl bis-pyridinium mono-oximes and organophosphates	0.5 2.8 0.5	53 15 27 1

#	Article	IF	CITATIONS
19	Physicochemical Properties and Supernucleophilicity of Oxime-Functionalized Surfactants: Hydrolytic Catalysts toward Dephosphorylation of Di- and Triphosphate Esters. Journal of Physical Chemistry B, 2013, 117, 3806-3817.	2.6	35