Tetsuro Tsuji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3395116/publications.pdf Version: 2024-02-01

Τετςμρο Τςιμι

#	Article	IF	CITATIONS
1	Moving boundary problems for a rarefied gas: Spatially one-dimensional case. Journal of Computational Physics, 2013, 250, 574-600.	3.8	32
2	Direct observations of thermophoresis in microfluidic systems. Micro and Nano Letters, 2017, 12, 520-525.	1.3	28
3	Thermophoretic Manipulation of Micro- and Nanoparticle Flow through a Sudden Contraction in a Microchannel with Near-Infrared Laser Irradiation. Physical Review Applied, 2018, 10, .	3.8	24
4	Opto-thermophoretic separation and trapping of plasmonic nanoparticles. Nanoscale, 2019, 11, 21093-21102.	5.6	23
5	Tailoring particle translocation via dielectrophoresis in pore channels. Scientific Reports, 2016, 6, 31670.	3.3	20
6	Dynamic Pattern Formation of Microparticles in a Uniform Flow by an On-Chip Thermophoretic Separation Device. Physical Review Applied, 2018, 9, .	3.8	19
7	Quantitative Evaluation of Optical Forces by Single Particle Tracking in Slit-like Microfluidic Channels. Journal of Physical Chemistry C, 2018, 122, 17963-17975.	3.1	18
8	Approach to steady motion of a plate moving in a free-molecular gas under a constant external force. Physical Review E, 2009, 80, 016309.	2.1	16
9	Convection Dynamics Forced by Optical Trapping with a Focused Laser Beam. Journal of Physical Chemistry C, 2020, 124, 8323-8333.	3.1	16
10	Decay of a Linear Pendulum in a Free-Molecular Gas and in a Special Lorentz Gas. Journal of Statistical Physics, 2012, 146, 620-645.	1.2	15
11	Gas motion in a microgap between a stationary plate and a plate oscillating in its normal direction. Microfluidics and Nanofluidics, 2014, 16, 1033-1045.	2.2	15
12	Artificial Cochlear Sensory Epithelium with Functions of Outer Hair Cells Mimicked Using Feedback Electrical Stimuli. Micromachines, 2018, 9, 273.	2.9	14
13	Relaxation of a Free-Molecular Gas to Equilibrium Caused by Interaction with Vessel Wall. Journal of Statistical Physics, 2010, 140, 518-543.	1.2	13
14	Effect of hydrodynamic inter-particle interaction on the orbital motion of dielectric nanoparticles driven by an optical vortex. Nanoscale, 2020, 12, 6673-6690.	5.6	13
15	Coarse-grained particle dynamics along helical orbit by an optical vortex irradiated in photocurable resins. OSA Continuum, 2019, 2, 400.	1.8	11
16	Negative thermophoresis of nanoparticles interacting with fluids through a purely-repulsive potential. Journal of Physics Condensed Matter, 2017, 29, 475101.	1.8	10
17	Separation of Nano- and Microparticle Flows Using Thermophoresis in Branched Microfluidic Channels. Micromachines, 2019, 10, 321.	2.9	9
18	Approach to equilibrium of a rotating sphere in a Stokes flow. Annali Dell'Universita Di Ferrara, 2011, 57, 211-228.	1.3	8

Tetsuro Tsuji

#	Article	IF	CITATIONS
19	Decay of a linear pendulum in a collisional gas: Spatially one-dimensional case. Physical Review E, 2014, 89, 052129.	2.1	8
20	Backward clusters, hierarchy and wild sums for a hard sphere system in a low-density regime. Mathematical Models and Methods in Applied Sciences, 2015, 25, 995-1010.	3.3	8
21	Characterisation of the static offset in the travelling wave in the cochlear basal turn. Pflugers Archiv European Journal of Physiology, 2020, 472, 625-635.	2.8	8
22	Switching between laserâ€induced thermophoresis and thermal convection of liquid suspension in a microgap with variable dimension. Electrophoresis, 2021, 42, 2401-2409.	2.4	6
23	Decay of an oscillating plate in a free-molecular gas. , 2011, , .		5
24	Molecular dynamics study of force acting on a model nano particle immersed in fluid with temperature gradient: Effect of interaction potential. AIP Conference Proceedings, 2016, , .	0.4	5
25	Thermophoresis of a Brownian particle driven by inhomogeneous thermal fluctuation. Physica A: Statistical Mechanics and Its Applications, 2018, 493, 467-482.	2.6	5
26	Simultaneous measurement of the oscillation characteristics and electrical voltage output of an artificial cochlear sensory epithelium immersed in a liquid: Theory and experiment. Sensors and Actuators A: Physical, 2019, 295, 414-427.	4.1	5
27	On the motion of slightly rarefied gas induced by a discontinuous surface temperature. Journal of Fluid Mechanics, 2020, 897, .	3.4	5
28	Optical trapping in micro- and nanoconfinement systems: Role of thermo-fluid dynamics and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100533.	11.6	5
29	Flow with nanoparticle clustering controlled by optical forces in quartz glass nanoslits. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	4
30	Synchronized resistive-pulse analysis with flow visualization for single micro- and nanoscale objects driven by optical vortex in double orifice. Scientific Reports, 2021, 11, 9323.	3.3	4
31	Transient behaviour of a rarefied gas around a sphere caused by impulsive rotation. Journal of Fluid Mechanics, 2021, 909, .	3.4	4
32	Numerical analysis of nonlinear acoustic wave propagation in a rarefied gas. AIP Conference Proceedings, 2012, , .	0.4	3
33	Slow approach to steady motion of a concave body in a free-molecular gas. Physical Review E, 2015, 92, 012130.	2.1	3
34	Inversion of the transverse force on a spinning sphere moving in a rarefied gas. Journal of Fluid Mechanics, 2022, 933, .	3.4	2
35	Modeling of single-particle translocation through a low-aspect-ratio nanopore. Journal of Biomechanical Science and Engineering, 2019, 14, 18-00539-18-00539.	0.3	1
36	Mathematical model of the auditory nerve response to stimulation by a microâ€machined cochlea. International Journal for Numerical Methods in Biomedical Engineering, 2021, , e3430.	2.1	1

Tetsuro Tsuji

#	Article	IF	CITATIONS
37	One-way flow over uniformly heated U-shaped bodies driven by thermal edge effects. Scientific Reports, 2022, 12, 1929.	3.3	1
38	Steady flow of highly rarefied gas in half space induced by gravity and non-uniform wall temperature. , 2014, , .		0
39	Numerical study on horizontal convection of a rarefied gas over a non-isothermal plane wall. Physics of Fluids, 2015, 27, 067103.	4.0	0
40	Moving boundary problems in kinetic theory of gases: Spatially one-dimensional problems. Séminaire Laurent Schwartz — EDP Et Applications, 0, , 1-13.	0.0	0
41	J0550301 Steady Rarefied Gas Flow in Half Space Induced by Gravity and Non-uniform Wall Temperature. The Proceedings of Mechanical Engineering Congress Japan, 2014, 2014, _J0550301J0550301	0.0	0
42	OS23-8 A Microfluidic Device for Visualization of Thermophoresis Using In-plane Two Adjacent Plates at Different Temperatures(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND) Tj ETQq0 0 0 rgBT	Overlock	18 Tf 50 54
43	Experimental Mechanics Asian Conference on Experimental Mechanics, 2015, 2015.14, 285. 28am2-E-2 History effect of drag force acting on a concave body in a free-molecular gas. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2015, 2015.7, _28am2-E-228am2-E-2.	0.0	0
44	Effect of Solution Composition on Thermophoresis of Micro Particles. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, J0540304.	0.0	0
45	Filtration of micro particles by laser-induced thermophoresis. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2017, 2017.8, PN-7.	0.0	0
46	Machine learning and Bayesian optimization for nanoparticle flow control by laser irradiation. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2018, 2018.9, 31pm2PN78.	0.0	0
47	Nanoparticle separation by laser induced thermophoresis in nanochannel. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2018, 2018.9, 01pm1PN144.	0.0	0
48	Numerical simulation of micro- and nanoparticles orbital motion driven by an optical vortex. , 2020, , .		0
49	A Generalized Slip-Flow Theory for a Slightly Rarefied Gas Flow Induced by Discontinuous Wall Temperature. Springer INdAM Series, 2021, , 327-344.	0.5	0