László Fábián

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3395063/publications.pdf

Version: 2024-02-01

77 papers

4,034 citations

30 h-index 63 g-index

80 all docs 80 does citations

80 times ranked

4172 citing authors

#	Article	IF	CITATIONS
1	Self-assembling, supramolecular chemistry and pharmacology of amphotericin B: Poly-aggregates, oligomers and monomers. Journal of Controlled Release, 2022, 341, 716-732.	4.8	24
2	Directing Crystallization Outcomes of Conformationally Flexible Molecules: Polymorphs, Solvates, and Desolvation Pathways of Fluconazole. Molecular Pharmaceutics, 2022, 19, 456-471.	2.3	13
3	Chemoenzymatic Synthesis of Fluorinated Cellodextrins Identifies a New Allomorph for Cellulose‣ike Materials**. Chemistry - A European Journal, 2021, 27, 1374-1382.	1.7	18
4	Automation Potential of a New, Rapid, Microscopy-Based Method for Screening Drug–Polymer Solubility. ACS Omega, 2020, 5, 11402-11410.	1.6	3
5	NMR-Enhanced Crystallography Aids Open Metal–Organic Framework Discovery Using Solvent-Free Accelerated Aging. Chemistry of Materials, 2020, 32, 4273-4281.	3.2	19
6	Spectrokinetic characterization of photoactive yellow protein films for integrated optical applications. European Biophysics Journal, 2019, 48, 465-473.	1.2	9
7	Solvent driven phase transitions of acyclovir – the role of water and solvent polarity. CrystEngComm, 2019, 21, 2180-2192.	1.3	8
8	Towards controlling the crystallisation behaviour of fenofibrate melt: triggers of crystallisation and polymorphic transformation. RSC Advances, 2018, 8, 13513-13525.	1.7	8
9	Mechanochemistry <i>vs.</i> solution growth: striking differences in bench stability of a cimetidine salt based on a synthetic method. CrystEngComm, 2018, 20, 7242-7247.	1.3	7
10	Nanocrystallization of Rare Tolbutamide Form V in Mesoporous MCM-41 Silica. Molecular Pharmaceutics, 2018, 15, 4926-4932.	2.3	16
11	Novel Thermal Imaging Method for Rapid Screening of Drug–Polymer Miscibility for Solid Dispersion Based Formulation Development. Molecular Pharmaceutics, 2018, 15, 5625-5636.	2.3	12
12	Redox-dependent control of i-Motif DNA structure using copper cations. Nucleic Acids Research, 2018, 46, 5886-5893.	6.5	46
13	Insight into Flufenamic Acid Cocrystal Dissolution in the Presence of a Polymer in Solution: from Single Crystal to Powder Dissolution. Molecular Pharmaceutics, 2017, 14, 4583-4596.	2.3	38
14	¹⁹ Fâ€NMR Spectroscopy as a Highly Sensitive Method for the Direct Monitoring of Confined Crystallization within Nanoporous Materials. Angewandte Chemie, 2016, 128, 9050-9054.	1.6	9
15	¹⁹ Fâ€NMR Spectroscopy as a Highly Sensitive Method for the Direct Monitoring of Confined Crystallization within Nanoporous Materials. Angewandte Chemie - International Edition, 2016, 55, 8904-8908.	7.2	30
16	Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate. Molecular Pharmaceutics, 2016, 13, 25-39.	2.3	84
17	Prediction of Hydrate and Solvate Formation Using Statistical Models. Crystal Growth and Design, 2016, 16, 70-81.	1.4	51
18	Investigation of an Amide-Pseudo Amide Hydrogen Bonding Motif within a Series of Theophylline:Amide Cocrystals. Crystal Growth and Design, 2016, 16, 51-58.	1.4	30

#	Article	IF	Citations
19	Molecular self-assembly and clustering in nucleation processes: general discussion. Faraday Discussions, 2015, 179, 155-197.	1.6	10
20	Time and space resolved methods: general discussion. Faraday Discussions, 2015, 179, 247-267.	1.6	7
21	Mechanistic and Kinetic Insight into Spontaneous Cocrystallization of Isoniazid and Benzoic Acid. Molecular Pharmaceutics, 2015, 12, 2981-2992.	2.3	31
22	Building solids inside nano-space: from confined amorphous through confined solvate to confined â€~metastable' polymorph. Physical Chemistry Chemical Physics, 2015, 17, 24761-24773.	1.3	26
23	A New Low Melting-Point Polymorph of Fenofibrate Prepared via Talc Induced Heterogeneous Nucleation. Crystal Growth and Design, 2015, 15, 5011-5020.	1.4	30
24	An Investigation into the Dehydration Behavior of Paroxetine HCl Form I Using a Combination of Thermal and Diffraction Methods: The Identification and Characterization of a New Anhydrous Form. Crystal Growth and Design, 2014, 14, 3774-3782.	1.4	19
25	Isostructural organic binary-host frameworks with tuneable and diversely decorated inclusion cavities. CrystEngComm, 2012, 14, 7898.	1.3	26
26	Identification and Characterization of Stoichiometric and Nonstoichiometric Hydrate Forms of Paroxetine HCl: Reversible Changes in Crystal Dimensions as a Function of Water Absorption. Molecular Pharmaceutics, 2012, 9, 3515-3525.	2.3	39
27	A model for a solvent-free synthetic organic research laboratory: click-mechanosynthesis and structural characterization of thioureas without bulk solvents. Green Chemistry, 2012, 14, 2462.	4.6	80
28	Utilizing Sulfoxide···lodine Halogen Bonding for Cocrystallization. Crystal Growth and Design, 2012, 12, 2969-2977.	1.4	25
29	Cocrystals of Fenamic Acids with Nicotinamide. Crystal Growth and Design, 2011, 11, 3522-3528.	1.4	100
30	Expanding the crystal landscape of isonicotinamide: concomitant polymorphism and co-crystallisation. CrystEngComm, 2011, 13, 6923.	1.3	45
31	The Use of Co-crystals for the Determination of Absolute Stereochemistry: An Alternative to Salt Formation. Journal of Organic Chemistry, 2011, 76, 1159-1162.	1.7	17
32	A rational approach to screen for hydrated forms of the pharmaceutical derivative magnesium naproxen using liquid-assisted grinding. CrystEngComm, 2011, 13, 3125.	1.3	40
33	Failures of fractional crystallization: ordered co-crystals of isomers and near isomers. Acta Crystallographica Section B: Structural Science, 2011, 67, 79-93.	1.8	28
34	Towards an environmentally-friendly laboratory: dimensionality and reactivity in the mechanosynthesis of metal–organic compounds. Chemical Communications, 2010, 46, 9191.	2.2	101
35	X-ray structural analysis, antioxidant and cytotoxic activity of newly synthesized salicylic acid derivatives. Structural Chemistry, 2010, 21, 67-78.	1.0	6
36	Rapid Roomâ€Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angewandte Chemie - International Edition, 2010, 49, 9640-9643.	7.2	378

#	Article	IF	CITATIONS
37	A list of organic kryptoracemates. Acta Crystallographica Section B: Structural Science, 2010, 66, 94-103.	1.8	86
38	Universal prediction of intramolecular hydrogen bonds in organic crystals. Acta Crystallographica Section B: Structural Science, 2010, 66, 237-252.	1.8	28
39	Picking out polymorphs: H-bond prediction and crystal structure stability. Journal of Cheminformatics, 2010, 2, .	2.8	0
40	Tunable recognition of the steroid α-face by adjacent π-electron density. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13216-13221.	3.3	54
41	Predicting stoichiometry and structure of solvates. Chemical Communications, 2010, 46, 2224.	2.2	78
42	Truly prospective prediction: inter- and intramolecular hydrogen bonding. CrystEngComm, 2010, 12, 2091.	1.3	30
43	Annular desmotropy of three pairs of seven-membered heterocycles confirmed by X-ray crystallography. CrystEngComm, 2010, 12, 1712.	1.3	7
44	New solid forms of artemisinin obtained through cocrystallisation. CrystEngComm, 2010, 12, 4038.	1.3	75
45	Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol. Advanced Materials, 2009, 21, 3905-3909.	11.1	451
46	Oneâ€Pot Mechanosynthesis with Three Levels of Molecular Selfâ€Assembly: Coordination Bonds, Hydrogen Bonds and Host–Guest Inclusion. Chemistry - A European Journal, 2009, 15, 12644-12652.	1.7	61
47	Persistent hydrogen bonding in polymorphic crystal structures. Acta Crystallographica Section B: Structural Science, 2009, 65, 68-85.	1.8	19
48	Knowledge-based H-bond prediction to aid experimental polymorph screening. CrystEngComm, 2009, 11, 2634.	1.3	116
49	Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG). CrystEngComm, 2009, 11, 743.	1.3	214
50	Cambridge Structural Database Analysis of Molecular Complementarity in Cocrystals. Crystal Growth and Design, 2009, 9, 1436-1443.	1.4	201
51	Hydrogen-bond motifs in the crystals of hydrophobic amino acids. Acta Crystallographica Section B: Structural Science, 2008, 64, 504-514.	1.8	12
52	Exploring the relationship between cocrystal stability and symmetry: is Wallach's rule applicable to multi-component solids?. Chemical Communications, 2008, , 1644.	2.2	70
53	Powder X-ray Diffraction as an Emerging Method to Structurally Characterize Organic Solids. Organic Letters, 2007, 9, 3133-3136.	2.4	100
54	Intra- and intermolecular interactions and water pincer in the crystal structure of a 3-P(O)Ph2substituted 1,2,3,6-tetrahydrophosphinine oxide hydrate. CrystEngComm, 2007, 9, 561-565.	1.3	10

#	Article	IF	Citations
55	Organic crystal hydrates: what are the important factors for formation. CrystEngComm, 2007, 9, 65-71.	1.3	175
56	Structural similarities in tetraaryltins described by virtual non-crystallographic rotations or translations: Kitaigorodskii's morphotropism is revisited. Acta Crystallographica Section B: Structural Science, 2007, 63, 411-417.	1.8	22
57	Knowledge-based model of hydrogen-bonding propensity in organic crystals. Acta Crystallographica Section B: Structural Science, 2007, 63, 768-782.	1.8	143
58	New Facile Tandem Route to Oxo- and Thioxo[1,2,4]triazolo[1,5-a]pyridinium Salts. Journal of Organic Chemistry, 2006, 71, 7805-7812.	1.7	16
59	Amodiaquinium dichloride dihydrate from laboratory powder diffraction data. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o4196-o4199.	0.2	13
60	Exploring cocrystal–cocrystal reactivity via liquid-assisted grinding: the assembling of racemic and dismantling of enantiomeric cocrystals. Chemical Communications, 2006, , 5009-5011.	2.2	102
61	Crystal Engineering with Alicyclic β-Amino Acids:  Construction of Hydrogen-Bonded Bilayers. Crystal Growth and Design, 2005, 5, 773-782.	1.4	21
62	Thermal studies of solvent exchange in isostructural solvates of a tetroxoprim-sulfametrole complex. Journal of Thermal Analysis and Calorimetry, 2004, 77, 695-708.	2.0	12
63	Structural studies of (N-phenylthioureidoalkyl- and -aryl)phosphonates. Acta Crystallographica Section B: Structural Science, 2004, 60, 211-218.	1.8	3
64	Isostructurality in one and two dimensions: isostructurality of polymorphs. Acta Crystallographica Section B: Structural Science, 2004, 60, 547-558.	1.8	87
65	Different forms of antiparallel stacking of hydrogen-bonded antidromic rings in the solid state: polymorphism with virtually the same unit cell and two-dimensional isostructurality with alternating layers. Acta Crystallographica Section B: Structural Science, 2004, 60, 755-762.	1.8	5
66	cis-7-Azabicyclo[4.2.0]octan-8-one. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o170-o172.	0.2	2
67	Two polymorphs of a \hat{l}^2 -lactam (trans-13-azabicyclo[10.2.0]tetradecan-14-one). Concomitant crystal polymorphism and isostructurality. Chemical Communications, 2004, , 2114-2115.	2.2	27
68	Two derivatives of (N-phenylthioureidoalkyl)phosphonates. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o46-o50.	0.4	3
69	Unexpected Ring Transformation to Pyrrolo[3.2-b]pyridine Derivatives. Fused Azolium Salts. 22‡. Journal of Organic Chemistry, 2003, 68, 5652-5659.	1.7	13
70	Dipole-Induced Polymorphs oftrans-2-Hydroxycycloheptanecarboxylic Acid with Virtually the Same Unit Cell. Journal of the American Chemical Society, 2003, 125, 34-35.	6.6	34
71	Novel, predicted patterns of supramolecular self-assembly, afforded by tetrameric R_4^4(12) rings of C 2 symmetry in the crystal structures of 2-hydroxy-1-cyclopentanecarboxylic acid, 2-hydroxy-1-cyclohexanecarboxylic acid and 2-hydroxy-1-cycloheptanecarboxylic acid. Acta Crystallographica Section B: Structural Science, 2002, 58, 494-501.	1.8	3
72	Crystal structures of ecdysteroids: the role of solvent molecules in hydrogen bonding and isostructurality. Acta Crystallographica Section B: Structural Science, 2002, 58, 710-720.	1.8	35

LÃiszLó FÃiBIÃiN

#	Article	IF	CITATIONS
73	Predictable close-packing similarities between cis- and trans-2-hydroxy-1-cyclooctanecarboxylic acids and trans-2-hydroxy-1-cyclooctanecarboxamide. Acta Crystallographica Section B: Structural Science, 2002, 58, 855-863.	1.8	2
74	Basic forms of supramolecular self-assembly organized by parallel and antiparallel hydrogen bonds in the racemic crystal structures of six disubstituted and trisubstituted cyclopentane derivatives. Acta Crystallographica Section B: Structural Science, 2001, 57, 539-550.	1.8	9
75	Supramolecular similarities between a diastereomer pair and their truncated derivative: common tetrameric synthon and isostructurality. Chemical Communications, 2000, , 2255-2256.	2.2	10
76	On the polymorphism of a sapogenin monohydrate induced by different rotations of water molecules. Acta Crystallographica Section B: Structural Science, 1999, 55, 788-792.	1.8	4
77	Volumetric measure of isostructurality. Acta Crystallographica Section B: Structural Science, 1999, 55, 1099-1108.	1.8	152