
Yun Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3394643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	VIV response of a long flexible riser fitted with strakes in uniform and linearly sheared currents. Applied Ocean Research, 2015, 52, 102-114.	4.1	74
2	Experimental study of the effects of surface roughness on the vortex-induced vibration response of a flexible cylinder. Ocean Engineering, 2015, 103, 40-54.	4.3	72
3	Experimental investigation of the effects of the coverage of helical strakes on the vortex-induced vibration response of a flexible riser. Applied Ocean Research, 2016, 59, 53-64.	4.1	50
4	Numerical simulation of vortex-induced vibration of a circular cylinder with different surface roughnesses. Marine Structures, 2018, 57, 165-179.	3.8	42
5	A method to estimate the hydroelastic behaviour of VLFS based on multi-rigid-body dynamics and beam bending. Ships and Offshore Structures, 2019, 14, 354-362.	1.9	39
6	Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole. Energy, 2018, 164, 964-977.	8.8	38
7	Vortex-induced vibrations and waves of a long circular cylinder predicted using a wake oscillator model. Ocean Engineering, 2018, 156, 294-305.	4.3	34
8	The maximum wave energy conversion by two interconnected floaters: Effects of structural flexibility. Applied Ocean Research, 2018, 71, 34-47.	4.1	33
9	Numerical Prediction of Fatigue Damage in Steel Catenary Riser Due to Vortex-Induced Vibration. Journal of Hydrodynamics, 2011, 23, 154-163.	3.2	32
10	Numerical prediction of vortex-induced vibrations of a long flexible cylinder in uniform and linear shear flows using a wake oscillator model. Ocean Engineering, 2019, 171, 157-171.	4.3	32
11	A time domain discrete-module-beam-bending-based hydroelasticity method for the transient response of very large floating structures under unsteady external loads. Ocean Engineering, 2018, 164, 332-349.	4.3	31
12	Effect of surface roughness on vortex-induced vibrations of a freely vibrating cylinder near a stationary plane wall. Ocean Engineering, 2020, 198, 106837.	4.3	31
13	3-D non-linear dynamics of inclined pipe conveying fluid, supported at both ends. Journal of Sound and Vibration, 2019, 449, 405-426.	3.9	28
14	Experimental investigation of the response performance of VIV on a flexible riser with helical strakes. Ships and Offshore Structures, 2016, 11, 113-128.	1.9	27
15	Non-linear dynamics of a simply supported fluid-conveying pipe subjected to motion-limiting constraints: Two-dimensional analysis. Journal of Sound and Vibration, 2018, 435, 192-204.	3.9	26
16	Effect of surface roughness on vortex-induced vibration response of a circular cylinder. Ships and Offshore Structures, 2018, 13, 28-42.	1.9	25
17	Flow-induced vibration of a trapezoidal cylinder placed at typical flow orientations. Journal of Fluids and Structures, 2021, 103, 103291.	3.4	25
18	Effect of surface roughness and initial gap on the vortex-induced vibrations of a freely vibrating cylinder in the vicinity of a plane wall. Marine Structures, 2020, 69, 102663.	3.8	22

Yun Gao

#	Article	IF	CITATIONS
19	Experimental study on response performance of vortex-induced vibration on a flexible cylinder. Ships and Offshore Structures, 2017, 12, 116-134.	1.9	19
20	Effect of boundary condition and aspect ratio on vortex-induced vibration response of a circular cylinder. Ocean Engineering, 2019, 188, 106244.	4.3	17
21	Flow induced vibration of two rigidly connected circular cylinders in different arrangements at a low Reynolds number. Ocean Engineering, 2020, 217, 107741.	4.3	15
22	Two-degree-of-freedom flow-induced vibration of two rigidly coupled tandem cylinders of unequal diameters. Ocean Engineering, 2020, 216, 108142.	4.3	15
23	Interaction between lattice dislocations and low-angle grain boundaries in Ni via molecular dynamics simulations. Molecular Simulation, 2017, 43, 1172-1178.	2.0	14
24	Tension and drag forces of flexible risers undergoing vortex-induced vibration. China Ocean Engineering, 2017, 31, 1-10.	1.6	13
25	Experimental study on response performance of VIV of a flexible riser with helical strakes. China Ocean Engineering, 2015, 29, 673-690.	1.6	12
26	Time-domain prediction of the coupled cross-flow and in-line vortex-induced vibrations of a flexible cylinder using a wake oscillator model. Ocean Engineering, 2021, 237, 109631.	4.3	12
27	Hydrodynamic analysis of three oscillating hydrofoils with wing-in-ground effect on power extraction performance. Ocean Engineering, 2022, 246, 110642.	4.3	11
28	Modification of effective angle of attack on hydrofoil power extraction. Ocean Engineering, 2021, 240, 109919.	4.3	9
29	Vortex-Induced Vibrations of A Long Flexible Cylinder in Linear and Exponential Shear Flows. China Ocean Engineering, 2019, 33, 44-56.	1.6	8
30	VIV response of a long flexible riser fitted with different helical strake coverages in uniform and linearly sheared currents. Ships and Offshore Structures, 2017, 12, 575-590.	1.9	6
31	Coupling response of flow-induced oscillating cylinder with a pair of flow-induced rotating impellers. Physics of Fluids, 2021, 33, .	4.0	6
32	Three-dimensional vortex-induced vibrations of a circular cylinder predicted using a wake oscillator model. Marine Structures, 2021, 80, 103078.	3.8	6
33	Numerical prediction of vortex-induced vibrations of a long flexible riser with an axially varying tension based on a wake oscillator model. Marine Structures, 2022, 85, 103265.	3.8	5
34	Numerical simulation of flow induced vibration of two rigidly connected cylinders in different arrangements. Ships and Offshore Structures, 2022, 17, 1142-1158.	1.9	4
35	Numerical study of vortex-induced vibrations of a circular cylinder at different incidence angles. Ocean Engineering, 2022, 259, 111858.	4.3	3
36	Experimental Investigation on the Suppression Device of VIV of a Flexible Riser. , 2014, , .		1

	Yun Gao		
#	ARTICLE	IF	CITATIONS
37	Experimental Investigation on the Wave Elevation around a Semisubmersible in Monochromatic and Irregular Waves. Journal of Waterway, Port, Coastal and Ocean Engineering, 2019, 145, 04018031.	1.2	Ο