
Alexander J Mustill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3394564/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The great escape: how exoplanets and smaller bodies desert dying stars. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2104-2123.	4.4	194
2	FORETELLINGS OF RAGNARÖK: WORLD-ENGULFING ASYMPTOTIC GIANTS AND THE INHERITANCE OF WHITE DWARFS. Astrophysical Journal, 2012, 761, 121.	4.5	193
3	Dynamical effects of stellar mass-loss on a Kuiper-like belt. Monthly Notices of the Royal Astronomical Society, 2011, 414, 930-939.	4.4	182
4	HOT JUPITERS AND COOL STARS. Astrophysical Journal, 2014, 794, 3.	4.5	166
5	Simulations of two-planet systems through all phases of stellar evolution: implications for the instability boundary and white dwarf pollution. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1686-1708.	4.4	151
6	Debris disc stirring by secular perturbations from giant planets. Monthly Notices of the Royal Astronomical Society, 2009, 399, 1403-1414.	4.4	131
7	A planetesimal orbiting within the debris disc around a white dwarf star. Science, 2019, 364, 66-69.	12.6	131
8	Long-term evolution of three-planet systems to the post-main sequence and beyond. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1404-1419.	4.4	124
9	Dependence of a planet's chaotic zone on particle eccentricity: the shape of debris disc inner edges. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3074-3080.	4.4	95
10	Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3942-3967.	4.4	95
11	THE DESTRUCTION OF INNER PLANETARY SYSTEMS DURING HIGH-ECCENTRICITY MIGRATION OF GAS GIANTS. Astrophysical Journal, 2015, 808, 14.	4.5	88
12	Unstable low-mass planetary systems as drivers of white dwarf pollution. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3939-3955.	4.4	86
13	A general model of resonance capture in planetary systems: first- and second-order resonances. Monthly Notices of the Royal Astronomical Society, 2011, 413, 554-572.	4.4	85
14	The effects of external planets on inner systems: multiplicities, inclinations and pathways to eccentric warm Jupiters. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3000-3023.	4.4	84
15	A giant exoplanet orbiting a very-low-mass star challenges planet formation models. Science, 2019, 365, 1441-1445.	12.6	78
16	A detailed dynamical investigation of the proposed QS Virginis planetary system. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2033-2039.	4.4	70
17	Is there an exoplanet in the Solar system?. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 460, L109-L113.	3.3	65
18	WTS-2 b: a hot Jupiter orbiting near its tidal destruction radius around a K dwarf. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1470-1489.	4.4	63

Alexander J Mustill

#	Article	IF	CITATIONS
19	Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2515-2521.	4.4	62
20	<i>HERSCHEL</i> 's "COLD DEBRIS DISKS†BACKGROUND GALAXIES OR QUIESCENT RIMS OF PLANETARY SYSTEMS?. Astrophysical Journal, 2013, 772, 32.	4.5	57
21	Consequences of planetary migration on the minor bodies of the early solar system. Astronomy and Astrophysics, 2019, 623, A169.	5.1	51
22	A simple scaling for the minimum instability time-scale of two widely spaced planets. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 434, L11-L15.	3.3	48
23	The Pan-Pacific Planet Search. VII. The Most Eccentric Planet Orbiting a Giant Star. Astronomical Journal, 2017, 154, 274.	4.7	47
24	CHEOPS observations of the HD 108236 planetary system: a fifth planet, improved ephemerides, and planetary radii. Astronomy and Astrophysics, 2021, 646, A157.	5.1	47
25	The origin of the eccentricity of the hot Jupiter in Cl Tau. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464, L114-L118.	3.3	40
26	Two Intermediate-mass Transiting Brown Dwarfs from the TESS Mission. Astronomical Journal, 2020, 160, 53.	4.7	39
27	K2-111 b â^' a short period super-Earth transiting a metal poor, evolved old star. Astronomy and Astrophysics, 2017, 604, A16.	5.1	36
28	Circularizing Planet Nine through dynamical friction with an extended, cold planetesimal belt. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4609-4616.	4.4	31
29	The unstable fate of the planet orbiting the A star in the HD 131399 triple stellar system. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1499-1504.	4.4	30
30	A pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 characterized with <i>CHEOPS</i> . Monthly Notices of the Royal Astronomical Society, 2022, 511, 1043-1071.	4.4	30
31	Exocomet signatures around the A-shell star <i>ï†</i> Leonis?. Astronomy and Astrophysics, 2016, 594, L1.	5.1	27
32	Fly-by encounters between two planetary systems I: Solar system analogues. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1366-1376.	4.4	27
33	Prospects for detecting decreasing exoplanet frequency with main-sequence age using <i>PLATO</i> . Monthly Notices of the Royal Astronomical Society, 2015, 453, 67-72.	4.4	26
34	Detailed chemical compositions of the wide binary HD 80606/80607: revised stellar properties and constraints on planet formation. Astronomy and Astrophysics, 2018, 614, A138.	5.1	26
35	Fast spectrophotometry of WD 1145+017. Monthly Notices of the Royal Astronomical Society, 2018, 481, 703-714.	4.4	22
36	Long-term stability of the HR 8799 planetary system without resonant lock. Astronomy and Astrophysics, 2016, 592, A147.	5.1	21

#	Article	IF	CITATIONS
37	Understanding the origin of white dwarf atmospheric pollution by dynamical simulations based on detected three-planet systems. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1854-1869.	4.4	21
38	Do instabilities in high-multiplicity systems explain the existence of close-in white dwarf planets?. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 501, L43-L48.	3.3	21
39	Greening of the brown-dwarf desert. Astronomy and Astrophysics, 2019, 628, A64.	5.1	19
40	Flyby encounters between two planetary systems II: exploring the interactions of diverse planetary system architectures. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1149-1165.	4.4	19
41	Dynamical evolution of two-planet systems and its connection with white dwarf atmospheric pollution. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4091-4106.	4.4	18
42	A search for transiting planets around hot subdwarfs. Astronomy and Astrophysics, 2021, 650, A205.	5.1	18
43	Capture and evolution of dust in planetary mean-motion resonances: a fast, semi-analytic method for generating resonantly trapped disc images. Monthly Notices of the Royal Astronomical Society, 2015, 448, 684-702.	4.4	17
44	Investigating the architecture and internal structure of the TOI-561 system planets with CHEOPS, HARPS-N, and TESS. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4551-4571.	4.4	17
45	Relentless and complex transits from a planetesimal debris disc. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1647-1666.	4.4	16
46	Twenty years of photometric microlensing events predicted by <i>Gaia</i> DR2. Astronomy and Astrophysics, 2018, 617, A135.	5.1	13
47	The dynamical evolution of transiting planetary systems including a realistic collision prescription. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2896-2908.	4.4	13
48	Super-Earth ingestion can explain the anomalously high metal abundances of M67ÂY2235. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	13
49	Encounters involving planetary systems in birth environments: the significant role of binaries. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1212-1225.	4.4	13
50	Accretion of tidally disrupted asteroids on to white dwarfs: direct accretion versus disc processing. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5671-5686.	4.4	13
51	Linking the formation and fate of exo-Kuiper belts within Solar system analogues. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5062-5078.	4.4	12
52	The entry geometry and velocity of planetary debris into the Roche sphere of a white dwarf. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1148-1164.	4.4	12
53	Metal Pollution of the Solar White Dwarf by Solar System Small Bodies. Astrophysical Journal, 2022, 924, 61.	4.5	10
54	A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system. Nature Astronomy, 2022, 6, 736-750.	10.1	9

Alexander J Mustill

#	Article	IF	CITATIONS
55	HD 76920 b pinned down: A detailed analysis of the most eccentric planetary system around an evolved star. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	7
56	Hot Jupiters, cold kinematics. Astronomy and Astrophysics, 2022, 658, A199.	5.1	7
57	Resilient habitability of nearby exoplanet systems. Monthly Notices of the Royal Astronomical Society, 2020, 492, 352-368.	4.4	6
58	Dynamical orbital evolution scenarios of the wide-orbit eccentric planet HRÂ5183b. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3616-3625.	4.4	4
59	White dwarf planets. EPJ Web of Conferences, 2013, 47, 06008.	0.3	3
60	Capture of satellites during planetary encounters. Astronomy and Astrophysics, 2020, 638, A139.	5.1	3
61	Disentangling the parameter space: the role of planet multiplicity in triggering dynamical instabilities on planetary systems around white dwarfs. Monthly Notices of the Royal Astronomical Society, 2022, 512, 104-115.	4.4	3
62	Hamiltonian model of capture into mean motion resonance. Proceedings of the International Astronomical Union, 2010, 6, 300-303.	0.0	1
63	Effects of capturing a wide-orbit planet on planetary systems: system stability and habitable zone bombardment rates. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1685-1693.	4.4	0