
Carmen Büttner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3394514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza, 2010, 20, 191-200.	2.8	193
2	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
3	Host Species-Dependent Population Structure of a Pollen-Borne Plant Virus, Cherry Leaf Roll Virus. Journal of Virology, 2006, 80, 2453-2462.	3.4	54
4	Male Phyllotreta striolata (F.) Produce an Aggregation Pheromone: Identification of Male-specific compounds and Interaction with Host Plant Volatiles. Journal of Chemical Ecology, 2011, 37, 85-97.	1.8	42
5	Analysis of the Complete Genomes of Acholeplasma brassicae, A. palmae and A. laidlawii and Their Comparison to the Obligate Parasites from â€`Candidatus Phytoplasma'. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 19-36.	1.0	36
6	Genetic Variability of Phytopathogenic <i>Fusarium proliferatum</i> Associated with Crown Rot in <i>Asparagus officinalis</i> . Journal of Phytopathology, 2009, 157, 446-456.	1.0	32
7	Generation and Analysis of Draft Sequences of â€~Stolbur' Phytoplasma from Multiple Displacement Amplification Templates. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 1-11.	1.0	32
8	Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus. Plants, 2018, 7, 7.	3.5	32
9	Determination of the complete genome sequence of European mountain ash ringspot-associated emaravirus from Sorbus intermedia reveals two additional genome segments. Archives of Virology, 2019, 164, 1937-1941.	2.1	32
10	Characterisation of a novel Emaravirus identified in mosaicâ€diseased Eurasian aspen (<scp><i>Populus) Tj ETQc</i></scp>	10 0 0 rgB1 2.5	[/Qverlock]
11	Analysis of Expressed Genes of the Bacterium †Candidatus Phytoplasma Mali' Highlights Key Features of Virulence and Metabolism. PLoS ONE, 2014, 9, e94391.	2.5	29
12	Differentiation of â€~ <i>Candidatus</i> Phytoplasma cynodontis' Based on 16S rRNA and <i>groEL</i> Genes and Identification of a New Subgroup, 16SrXIV-C. Plant Disease, 2015, 99, 1578-1583.	1.4	22
13	Complete nucleotide sequence of Cherry leaf roll virus (CLRV), a subgroup C nepovirus. Virus Research, 2012, 163, 678-683.	2.2	20
14	A novel badnavirus discovered from Betula sp. affected by birch leaf-roll disease. PLoS ONE, 2018, 13, e0193888.	2.5	19
15	Cherry leaf roll virus abundant on Betula pubescens in Finland. Silva Fennica, 2007, 41, .	1.3	17

16	Bio-rational control of red flour beetle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) in stored wheat with Calneem® oil derived from neem seeds. Journal of Pest Science, 2010, 83, 471-479.	3.7	16
17	Next-Generation Sequencing Reveals a Novel Emaravirus in Diseased Maple Trees From a German Urban Forest. Frontiers in Microbiology, 2020, 11, 621179.	3.5	16
	Determinal of Levienberry distinguised in (Figures) (Liverenenterry Discoversibles) to supervise the maine		

Potential of Lariophagus distinguendus (Förster) (Hymenoptera: Pteromalidae) to suppress the maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) in bagged and bulk stored maize. 3.0 15 Biological Control, 2012, 60, 175-181.

Carmen Büttner

#	Article	IF	CITATIONS
19	High genetic diversity at the inter-/intra-host level of <i>Cherry leaf roll virus</i> population associated with the birch leaf-roll disease in Fennoscandia. Scandinavian Journal of Forest Research, 2016, 31, 546-560.	1.4	15
20	Unravelling the virome in birch: RNA-Seq reveals a complex of known and novel viruses. PLoS ONE, 2020, 15, e0221834.	2.5	15
21	A novel emaravirus comprising five RNA segments is associated with ringspot disease in oak. Archives of Virology, 2021, 166, 987-990.	2.1	15
22	Towards the Forest Virome: High-Throughput Sequencing Drastically Expands Our Understanding on Virosphere in Temperate Forest Ecosystems. Microorganisms, 2021, 9, 1730.	3.6	15
23	Cherry leaf roll virus â \in " an emerging virus in Finland?. Silva Fennica, 2009, 43, .	1.3	15
24	A model system for plant-virus interaction—infectivity and seed transmission of Cherry leaf roll virus (CLRV) in Arabidopsis thaliana. European Journal of Plant Pathology, 2009, 124, 527-532.	1.7	14
25	Identification of an Emaravirus in a Common Oak (Quercus robur L.) Conservation Seed Orchard in Germany: Implications for Oak Health. Forests, 2020, 11, 1174.	2.1	14
26	Effects of sanitation processes on survival of Synchytrium endobioticum and Globodera rostochiensis. European Journal of Plant Pathology, 2012, 133, 753-763.	1.7	12
27	Viability of Plant–Pathogenic Fungi Reduced by Anaerobic Digestion. Bioenergy Research, 2013, 6, 966-973.	3.9	12
28	Serological marking of Pnigalio agraules (Hymenoptera: Eulophidae) for field dispersal studies. Journal of Pest Science, 2009, 82, 47-53.	3.7	11
29	Genetic Variability and Phylogeny of European mountain ash ringspot-associated virus RNA3 and RNA4. Forests, 2015, 6, 4072-4087.	2.1	11
30	Differentiation of Cherry leaf roll virus isolates from various host plants by immunocapture-reverse transcription-polymerase chain reaction-restriction fragment length polymorphism according to phylogenetic relations. Journal of Virological Methods, 2009, 157, 147-154.	2.1	10
31	Integration of Calneem® oil and parasitoids to control Cadra cautella and Corcyra cephalonica in stored grain cereals. Phytoparasitica, 2011, 39, 223-233.	1.2	10
32	Elevated root retention of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coniferous trees. Environmental Science and Pollution Research, 2014, 21, 3733-3743.	5.3	10
33	Susceptibility of different plant species and tomato cultivars to two isolates of Pepino mosaic virus. European Journal of Plant Pathology, 2011, 129, 579-590.	1.7	9
34	Complete genome determination and analysis of Acholeplasma oculi strain 19L, highlighting the loss of basic genetic features in the Acholeplasmataceae. BMC Genomics, 2014, 15, 931.	2.8	9
35	Initial Studies on Cucumber Transcriptome Analysis under Silicon Treatment. Silicon, 2019, 11, 2365-2369.	3.3	9
36	Is Pollen Production of Birch Controlled by Genetics and Local Conditions?. International Journal of Environmental Research and Public Health, 2022, 19, 8160.	2.6	9

Carmen Büttner

#	Article	IF	CITATIONS
37	Efficacy of electrolytically-derived disinfectant against dispersal of Fusarium oxysporum and Rhizoctonia solani in hydroponic tomatoes. Scientia Horticulturae, 2018, 234, 116-125.	3.6	8
38	Characterization of a Novel Emaravirus Affecting Ash Species (Fraxinus spp.) in Europe. Forests, 2021, 12, 1574.	2.1	8
39	Binding of RDX to Cell Wall Components of <i>Pinus sylvestris</i> and <i>Picea glauca</i> and Three-Year Mineralisation Study of Tissue-Associated RDX Residues. International Journal of Phytoremediation, 2015, 17, 716-725.	3.1	7
40	Arable Weeds at the Edges of Kettle Holes as Overwintering Habitat for Phytopathogenic Fungi. Agronomy, 2022, 12, 823.	3.0	7
41	Nanoparticle–Virus Complex Shows Enhanced Immunological Effect Against Baculovirus. Journal of Nanoscience and Nanotechnology, 2009, 9, 5567-5571.	0.9	6
42	Multivariate Raman mapping for phenotypic characterization in plant tissue sections. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 251, 119418.	3.9	6
43	Molecular identification of Trichogramma species from Pakistan, using ITS-2 region of rDNA. BioControl, 2013, 58, 483-491.	2.0	5
44	Emerging Plant Viruses in Urban Green: Detection of the Virome in Birch (Betula sp.). Journal of Horticulture, 2018, 05, .	0.3	4
45	Kinetics of inactivation and dilution effects on the mass balance ofÂfungal phytopathogens in anaerobic digesters. Journal of Environmental Management, 2014, 133, 116-120.	7.8	2
46	CHAPTER 13: Filtration and Centrifugation for Detection of Plant Pathogens in Irrigation Water. , 0, , 139-148.		2
47	Electrolytic Disinfection of Irrigation Water for Intensive Crop Production in Greenhouses as Demonstrated on Tomatoes (Solanum lycopersicum Mill). Horticulturae, 2022, 8, 414.	2.8	2
48	Control of root zone pH is not effective in preventing Pythium aphanidermatum disease in cucumber. Journal of Plant Diseases and Protection, 2010, 117, 244-247.	2.9	1
49	A new species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) closely related to T. chilonis Ishii from Pakistan. Zootaxa, 2011, 2970, 41.	0.5	1
50	PART IV: Pathogen Management Through Water Treatment. , 0, , 185-185.		0
51	PART I: Linkages Between Crop Disease and Irrigation Water. , 0, , 1-1.		Ο
52	PART II: Diversity and Biology of Plant Pathogens in Water. , 0, , 55-55.		0
53	APPENDIX: Partial List of Plant Pathogens Found in Different Water Sources and Crop Production Systems. , 0, , 389-411.		0
54	PART III: Detection Technology and Economic Threshold for Plant Pathogens in Irrigation Water. , 0, , 123-123.		0

#	Article	IF	CITATIONS
55	PART V: Pathogen Management Through Effective System Design and Best Practices. , 0, , 319-319.		0