
Jiajun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3394489/publications.pdf Version: 2024-02-01

LIALLIN WANC

#	Article	IF	CITATIONS
1	Binding loop of sunflower trypsin inhibitor 1 serves as a design motif for proteolysis-resistant antimicrobial peptides. Acta Biomaterialia, 2021, 124, 254-269.	4.1	50
2	De novo design of a pH-triggered self-assembled β-hairpin nanopeptide with the dual biological functions for antibacterial and entrapment. Journal of Nanobiotechnology, 2021, 19, 183.	4.2	30
3	PEGylation of the Antimicrobial Peptide PG-1: A Link between Propensity for Nanostructuring and Capacity of the Antitrypsin Hydrolytic Ability. Journal of Medicinal Chemistry, 2021, 64, 10469-10481.	2.9	22
4	Design and heterologous expression of a novel dimeric LL37 variant in Pichia pastoris. Microbial Cell Factories, 2021, 20, 143.	1.9	7
5	A Novel Dual-Targeted α-Helical Peptide With Potent Antifungal Activity Against Fluconazole-Resistant Candida albicans Clinical Isolates. Frontiers in Microbiology, 2020, 11, 548620.	1.5	15
6	Targeted and Intracellular Antibacterial Activity against <i>S. agalactiae</i> of the Chimeric Peptides Based on Pheromone and Cell-Penetrating Peptides. ACS Applied Materials & Interfaces, 2020, 12, 44459-44474.	4.0	32
7	Systematically Studying the Optimal Amino Acid Distribution Patterns of the Amphiphilic Structure by Using the Ultrashort Amphiphiles. Frontiers in Microbiology, 2020, 11, 569118.	1.5	18
8	Conversion of Broad-Spectrum Antimicrobial Peptides into Species-Specific Antimicrobials Capable of Precisely Targeting Pathogenic Bacteria. Scientific Reports, 2020, 10, 944.	1.6	44
9	Therapeutic Potential of Trp-Rich Engineered Amphiphiles by Single Hydrophobic Amino Acid End-Tagging. ACS Applied Materials & Interfaces, 2019, 11, 43820-43834.	4.0	22
10	Cover Image, Volume 39, Issue 3. Medicinal Research Reviews, 2019, 39, i.	5.0	0
11	Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity. Biomaterials Science, 2019, 7, 2394-2409.	2.6	65
12	Rational Design of Short Peptide Variants by Using Kunitzin-RE, an Amphibian-Derived Bioactivity Peptide, for Acquired Potent Broad-Spectrum Antimicrobial and Improved Therapeutic Potential of Commensalism Coinfection of Pathogens. Journal of Medicinal Chemistry, 2019, 62, 4586-4605.	2.9	62
13	Antimicrobial Peptides with High Proteolytic Resistance for Combating Gram-Negative Bacteria. Journal of Medicinal Chemistry, 2019, 62, 2286-2304.	2.9	106
14	Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Medicinal Research Reviews, 2019, 39, 831-859.	5.0	309
15	Combating Drug-Resistant Fungi with Novel Imperfectly Amphipathic Palindromic Peptides. Journal of Medicinal Chemistry, 2018, 61, 3889-3907.	2.9	66
16	Novel Design of Heptad Amphiphiles To Enhance Cell Selectivity, Salt Resistance, Antibiofilm Properties and Their Membrane-Disruptive Mechanism. Journal of Medicinal Chemistry, 2017, 60, 2257-2270.	2.9	45
17	Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance. Acta Biomaterialia, 2016, 30, 78-93.	4.1	92
18	High specific selectivity and Membrane-Active Mechanism of the synthetic centrosymmetric α-helical peptides with Gly-Gly pairs. Scientific Reports, 2015, 5, 15963.	1.6	74

Jiajun Wang

#	Article	IF	CITATIONS
19	Bactericidal Efficiency and Modes of Action of the Novel Antimicrobial Peptide T9W against Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2015, 59, 3008-3017.	1.4	40
20	Antimicrobial activity and membrane-active mechanism of tryptophan zipper-like β-hairpin antimicrobial peptides. Amino Acids, 2015, 47, 2385-2397.	1.2	48
21	Antimicrobial Properties and Membrane-Active Mechanism of a Potential α-Helical Antimicrobial Derived from Cathelicidin PMAP-36. PLoS ONE, 2014, 9, e86364.	1.1	140
22	Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide. PLoS ONE, 2014, 9, e114605.	1.1	35