Xiaolei Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3394321/publications.pdf Version: 2024-02-01

XIAOLEI SHL

#	Article	IF	CITATIONS
1	Development of a shelf-stable, gel-based delivery system for probiotics by encapsulation, 3D printing, and freeze-drying. LWT - Food Science and Technology, 2022, 157, 113075.	5.2	25
2	An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying. Food Hydrocolloids, 2021, 111, 106262.	10.7	63
3	Effects of Magnesium–Tungsten co-substitution on crystal structure and microwave dielectric properties of CaTi1-x(Mg1/2W1/2)xO3 ceramics. Ceramics International, 2021, 47, 3354-3360.	4.8	8
4	Development of methylcelluloseâ€based sustainedâ€release dosage by semisolid extrusion additive manufacturing in drug delivery system. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 257-268.	3.4	13
5	Effects of Lyophilization on the Release Profiles of 3D Printed Delivery Systems Fabricated with Carboxymethyl Cellulose Hydrogel. Polymers, 2021, 13, 749.	4.5	4
6	Structure dependence of dielectric characteristics in Li2Mg3Ti1-x(Al0.5Ta0.5)xO6 ceramics. Journal of Materials Research and Technology, 2021, 11, 1378-1386.	5.8	4
7	Effect of zirconium deficiency on structure characteristics, morphology and microwave dielectric properties of Li2Mg3Zr1-xO6 ceramics. Ceramics International, 2021, 47, 12567-12573.	4.8	9
8	Mechanism study of the Mnâ€substituted magnesium borate: Decreased sintering temperature and improved dielectric property. Journal of the American Ceramic Society, 2021, 104, 4614-4623.	3.8	15
9	Structural dependence of microwave dielectric performance of wolframite structured Mg1-xCaxZrNb2O8 ceramics: Crystal structure, microstructure evolution, Raman analysis and chemical bond theory. Journal of the European Ceramic Society, 2021, 41, 3445-3451.	5.7	14
10	Ferrite ceramic filled poly-dimethylsiloxane composite with enhanced magnetic-dielectric properties as substrate material for flexible electronics. Ceramics International, 2021, 47, 18246-18251.	4.8	19
11	Crystallographic characteristics and microwave dielectric properties of Ni-modified MgTa2O6 ceramics. Ceramics International, 2021, 47, 22514-22521.	4.8	9
12	Investigation of crystal characteristics, Raman spectra, and microwave dielectric properties of Mg1-xZnxTa2O6 ceramics. Journal of the European Ceramic Society, 2021, 41, 5526-5530.	5.7	21
13	Synthesis and photocatalytic H ₂ â€production activity of plasmaâ€ŧreated Ti ₃ C ₂ T <i>_x</i> MXene modified graphitic carbon nitride. Journal of the American Ceramic Society, 2020, 103, 849-858.	3.8	49
14	3D printing of extended-release tablets of theophylline using hydroxypropyl methylcellulose (HPMC) hydrogels. International Journal of Pharmaceutics, 2020, 591, 119983.	5.2	84
15	Structural characteristics and dielectric properties of Ti4+-substituted Li2Mg3SnO6 ceramics. Ceramics International, 2020, 46, 16038-16046.	4.8	7
16	Investigation of grain growth and magnetic properties of low-sintered LiZnTi ferrite-ceramic. Ceramics International, 2020, 46, 14669-14673.	4.8	20
17	Structure and microwave dielectric properties of Li2Mg3Ti1-x(Al1/2Nb1/2)xO6 ceramics. Ceramics International, 2020, 46, 13737-13742.	4.8	15
18	Enhanced magnetic properties of low temperature sintered LiZnTi ferrite ceramic synthesized through adjusting microstructure. Journal of Alloys and Compounds, 2020, 827, 154338.	5.5	8

XIAOLEI SHI

#	Article	IF	CITATIONS
19	Temperature Stable and Low Loss Microwave Dielectric Ceramics of Li2Mg3-xSrxTiO6. IOP Conference Series: Materials Science and Engineering, 2020, 784, 012009.	0.6	1
20	Printability of a Cellulose Derivative for Extrusion-Based 3D Printing: The Application on a Biodegradable Support Material. Frontiers in Materials, 2020, 7, .	2.4	28
21	Crystal structure, Raman spectroscopy, metal compatibility and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics. Materials Chemistry and Physics, 2020, 250, 122954.	4.0	22
22	High-quality factor of (1 â^' x) Li2Mg3TiO6-xBaV2O6 (x = 0.1, 0.3, 0.4, 0.5, 0.6) ceramics wit temperature. Journal of Materials Science: Materials in Electronics, 2020, 31, 8489-8495.	th low sinte	ring
23	Correlation between structure characteristics and dielectric properties of Li2Mg3-xCuxTiO6 ceramics based on complex chemical bond theory. Ceramics International, 2019, 45, 23509-23514.	4.8	20
24	Temperature stability and chemical compatibility of novel Li1.6Zn1.6Sn2.8O8 ceramics. Materials Chemistry and Physics, 2019, 238, 121960.	4.0	8
25	Microstructures and magnetic properties of low temparature sintering NiCuZn ferrite ceramics for microwave applications. Ceramics International, 2019, 45, 22163-22168.	4.8	26
26	3D printing and characterization of hydroxypropyl methylcellulose and methylcellulose for biodegradable support structures. Polymer, 2019, 173, 119-126.	3.8	29
27	Microstructure and magnetic properties of porous NiCuZn ferrite ceramic. , 2019, , .		0
28	Printability Of Hydrogel Composites Using Extrusion-Based 3D Printing And Post-Processing With Calcium Chloride. Food Science & Nutrition, 2019, 5, 1-5.	0.1	3
29	The effects of different dry roast parameters on peanut quality using an industrial belt-type roaster simulator. Food Chemistry, 2018, 240, 974-979.	8.2	13
30	CTAB-assisted hydrothermal synthesis and luminescence properties of BiPO4:Eu3+ phosphors. Journal of Materials Science: Materials in Electronics, 2017, 28, 15154-15160.	2.2	5
31	Characterization of peanuts after dry roasting, oil roasting, and blister frying. LWT - Food Science and Technology, 2017, 75, 520-528.	5.2	23
32	Kinetics of color development of peanuts during dry roasting using a batch roaster. Journal of Food Process Engineering, 2017, 40, e12498.	2.9	6
33	Synthesis and luminescent properties of KLa1â^'xâ^'y(MoO4)2â^'z(WO4)z:xEu3+, yDy3+ phosphors for WLEDs. Journal of Materials Science: Materials in Electronics, 2016, 27, 9470-9475.	2.2	6
34	EDTA-assisted hydrothermal synthesis of KLa(MoO4)2:Eu3+ microcrystals and their luminescence properties. Ceramics International, 2016, 42, 16499-16504.	4.8	17
35	Hydrothermal synthesis and multicolor luminescence properties of Dy 3+ /Eu 3+ co-doped KLa(MoO 4) 2 phosphors. Ceramics International, 2016, 42, 7781-7786.	4.8	33
36	Hydrothermal Synthesis and Luminescence Property of Nanoscaled BiPO ₄ :Eu ³⁺ Powders. Journal of Nanoscience and Nanotechnology, 2016, 16, 3827-3830.	0.9	8

XIAOLEI SHI

#	Article	IF	CITATIONS
37	Luminescence properties of a novel promising red phosphor Na3Gd2â^'x(BO3)3:xEu3+. Optics and Laser Technology, 2016, 85, 7-13.	4.6	19
38	Anion/Cation-Controlled Morphology Evolution of Bi1â^'x PO4:xEu3+ and Enhanced Luminescence Properties. Journal of Electronic Materials, 2016, 45, 709-714.	2.2	2
39	Hydrothermal synthesis of YPO4:Eu3+ hexagonal prisms microarchitectures: Tunable morphology, formation mechanism, and recovery luminescence properties. Ceramics International, 2015, 41, 6620-6630.	4.8	23
40	Enhanced luminescence properties of BiPO4:Eu3+ phosphors prepared by hydrothermal method. Ceramics International, 2015, 41, 6683-6686.	4.8	13
41	Synthesis and luminescence properties of Eu3+-doped KLa(MoO4)2 red-emitting phosphor. Superlattices and Microstructures, 2015, 85, 672-679.	3.1	16
42	Enhancement of red emission in KLa(MoO4)2:Eu3+, Bi3+ phosphor for WLEDs. Ceramics International, 2015, 41, 14834-14838.	4.8	26
43	Effects of pH and Sm3+ doping on the structure, morphology and luminescence properties of BiPO4:Sm3+ phosphors prepared by hydrothermal method. Ceramics International, 2015, 41, 3162-3168.	4.8	30
44	Strategies to Mitigate Peanut Allergy: Production, Processing, Utilization, and Immunotherapy Considerations. Annual Review of Food Science and Technology, 2014, 5, 155-176.	9.9	10
45	Development of a pilot-scale process to sequester aflatoxin and release bioactive peptides from highly contaminated peanut meal. LWT - Food Science and Technology, 2013, 51, 492-499.	5.2	9
46	Allergenic Properties of Enzymatically Hydrolyzed Peanut Flour Extracts. International Archives of Allergy and Immunology, 2013, 162, 123-130.	2.1	37
47	Allergenicity of Peanut Proteins is Retained Following Enzymatic Hydrolysis. Journal of Allergy and Clinical Immunology, 2012, 129, AB367.	2.9	3