Francesco Nazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3394290/publications.pdf

Version: 2024-02-01

54 papers

3,283 citations

236925 25 h-index 53 g-index

58 all docs 58 docs citations

58 times ranked 2921 citing authors

#	Article	IF	Citations
1	Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18466-18471.	7.1	531
2	Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies. PLoS Pathogens, 2012, 8, e1002735.	4.7	364
3	Are bee diseases linked to pesticides? â€" A brief review. Environment International, 2016, 89-90, 7-11.	10.0	350
4	Standard methods for varroa research. Journal of Apicultural Research, 2013, 52, 1-54.	1.5	264
5	Ecology of <i>Varroa destructor</i> , the Major Ectoparasite of the Western Honey Bee, <i>Apis mellifera</i> . Annual Review of Entomology, 2016, 61, 417-432.	11.8	261
6	A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3203-3208.	7.1	188
7	Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics, 2017, 18, 207.	2.8	100
8	Disentangling multiple interactions in the hive ecosystem. Trends in Parasitology, 2014, 30, 556-561.	3.3	75
9	Statistical guidelines for <i>Apis mellifera</i> research. Journal of Apicultural Research, 2013, 52, 1-24.	1.5	73
10	Reinfestation of an acaricide-treated apiary byVarroa jacobsoni Oud. Experimental and Applied Acarology, 1992, 16, 279-286.	1.6	66
11	The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Scientific Reports, 2016, 6, 28341.	3.3	57
12	A semiochemical from brood cells infested by Varroa destructor triggers hygienic behaviour in Apis mellifera. Apidologie, 2004, 35, 65-70.	2.0	56
13	How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrcarbons and water loss in infested honeybees. Journal of Insect Physiology, 2012, 58, 1548-1555.	2.0	56
14	Haemolymph removal by <i>Varroa</i> mite destabilizes the dynamical interaction between immune effectors and virus in bees, as predicted by Volterra's model. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190331.	2.6	53
15	Selection of <i>Apis mellifera</i> workers by the parasitic mite <i>Varroa destructor</i> using host cuticular hydrocarbons. Parasitology, 2010, 137, 967-973.	1.5	52
16	Elucidating the mechanisms underlying the beneficial health effects of dietary pollen on honey bees (Apis mellifera) infested by Varroa mite ectoparasites. Scientific Reports, 2017, 7, 6258.	3.3	48
17	Honey Bee Antiviral Immune Barriers as Affected by Multiple Stress Factors: A Novel Paradigm to Interpret Colony Health Decline and Collapse. Viruses, 2018, 10, 159.	3.3	43
18	Repellent effect of sweet basil compounds on Ixodes ricinus ticks. Experimental and Applied Acarology, 2008, 45, 219-228.	1.6	41

#	Article	IF	Citations
19	Degradation of Fumonisin B1 by a Bacterial Strain Isolated from Soil. Biodegradation, 2006, 17, 31-38.	3.0	37
20	Octanoic acid confers to royal jelly varroa-repellent properties. Die Naturwissenschaften, 2009, 96, 309-314.	1.6	36
21	Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera). Insect Biochemistry and Molecular Biology, 2017, 87, 1-13.	2.7	35
22	A semiochemical from larval food influences the entrance of Varroa destructor into brood cells. Apidologie, 2004, 35, 403-410.	2.0	33
23	Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation. Nature Communications, 2020, $11,5887$.	12.8	32
24	Epidemiology of a major honey bee pathogen, deformed wing virus: potential worldwide replacement of genotype A by genotype B. International Journal for Parasitology: Parasites and Wildlife, 2022, 18, 157-171.	1.5	31
25	Semiochemicals from larval food affect the locomotory behaviour of Varroa destructor. Apidologie, 2001, 32, 149-155.	2.0	27
26	Prevalence of tickâ€borne encephalitis virus in <i>lxodes Ricinus</i> from a novel endemic area of North Eastern Italy. Journal of Medical Virology, 2009, 81, 309-316.	5.0	27
27	(Z)-8-Heptadecene reduces the reproduction of Varroa destructorin brood cells. Apidologie, 2004, 35, 265-273.	2.0	25
28	Ticks and Lyme borreliosis in an alpine area in northeast Italy. Medical and Veterinary Entomology, 2010, 24, no-no.	1.5	24
29	Soil invertebrate dynamics of soybean agroecosystems encircled by hedgerows or not in Friuli, Italy. First data. Agriculture, Ecosystems and Environment, 1989, 27, 163-176.	5. 3	23
30	(Z)-8-heptadecene from infested cells reduces the reproduction of Varroa destructor under laboratory conditions. Journal of Chemical Ecology, 2002, 28, 2181-2190.	1.8	22
31	Possible side effects of sugar supplementary nutrition on honey bee health. Apidologie, 2020, 51, 594-608.	2.0	22
32	Mite infestation during development alters the in-hive behaviour of adult honeybees. Apidologie, 2015, 46, 306-314.	2.0	21
33	Standard methods for chemical ecology research in <i>Apis mellifera</i> . Journal of Apicultural Research, 2013, 52, 1-34.	1.5	20
34	The presence of inhibitors of the reproduction of Varroa jacobsoni Oud. (Gamasida: Varroidae) in infested cells. Experimental and Applied Acarology, 1996, 20, 617-623.	1.6	19
35	The reduced brood nursing by mite-infested honey bees depends on their accelerated behavioral maturation. Journal of Insect Physiology, 2018, 109, 47-54.	2.0	19
36	Investigating the relationship between environmental factors and tick abundance in a small, highly heterogeneous region. Journal of Vector Ecology, 2015, 40, 107-116.	1.0	16

#	Article	lF	CITATIONS
37	Holistic environmental risk assessment for bees. Science, 2021, 371, 897-897.	12.6	14
38	Semiochemicals affecting the host-related behaviour of the dry bean beetle Acanthoscelides obtectus (Say). Journal of Stored Products Research, 2008, 44, 108-114.	2.6	13
39	Sex pheromone of aphid parasitoidPraon volucre (Hymenoptera, Braconidae). Journal of Chemical Ecology, 1996, 22, 1169-1175.	1.8	12
40	Honeybees use propolis as a natural pesticide against their major ectoparasite. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20212101.	2.6	12
41	Two Distances of Forewing Venation as Estimates of Wing Size. Journal of Apicultural Research, 1994, 33, 59-61.	1.5	10
42	From Chemistry to Behavior. Molecular Structure and Bioactivity of Repellents against Ixodes ricinus Ticks. PLoS ONE, 2013, 8, e67832.	2.5	9
43	Fluctuation of forewing characters in hybrid honey bees from northeastern Italy. Journal of Apicultural Research, 1992, 31, 27-31.	1.5	8
44	Analysis of cuticular hydrocarbons in two <i>Anagrus</i> species (Hymenoptera: Mymaridae) as a tool to improve their correct identification. Canadian Entomologist, 2006, 138, 348-356.	0.8	7
45	Response of western flower thrips, Frankliniella occidentals and its predator Amblyseius cucumeris to chrysanthemum volatiles in olfactometer and greenhouse trials. International Journal of Tropical Insect Science, 1998, 18, 139-144.	1.0	6
46	Research and education for sustainability in a beekeeping project in sub-Saharan Africa. Environment, Development and Sustainability, 2014, 16, 619-632.	5.0	3
47	Factors affecting the response of Ceutorhynchus assimilis Payk. (Col., Curculionidae) males to conspecific odour. Journal of Applied Entomology, 2001, 125, 433-435.	1.8	2
48	Honeybees use various criteria to select the site for performing the waggle dances on the comb. Behavioral Ecology and Sociobiology, 2019, 73, 1.	1.4	2
49	The Beneficial Effect of Pollen on Varroa Infested Bees Depends on Its Influence on Behavioral Maturation Genes. Frontiers in Insect Science, 2022, 2, .	2.1	2
50	Behavioural Evidence and Chemical Identification of a Female Sex Pheromone in Anagrus atomus (Hymenoptera: Mymaridae). Journal of Chemical Ecology, 2021, 47, 534-543.	1.8	1
51	A bioassay to assess the activity of repellent substances on Ixodes ricinus nymphs. , 2010, , 517-519.		1
52	Commentary: Engineered symbionts activate honey bee immunity and limit pathogens. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	1
53	Noberto Milani 1950–2008. Journal of Apicultural Research, 2008, 47, 179-179.	1.5	0
54	Acari parassiti. , 2014, , 211-254.		0