Ll Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3394256/publications.pdf Version: 2024-02-01

Ιι Μαρτινι

#	Article	IF	CITATIONS
1	Temperature Sensing with Nd3+ Doped YAS Laser Microresonators. Applied Sciences (Switzerland), 2021, 11, 1117.	2.5	4
2	Thermo-optic response of MEH-PPV films incorporated to monolithic Fabry-Perot microresonators. Dyes and Pigments, 2020, 182, 108625.	3.7	1
3	Microspheres with Atomic-Scale Tolerances Generate Hyperdegeneracy. Physical Review X, 2020, 10, .	8.9	7
4	Luminescent Nd ³⁺ â€Based Microresonators Working as Optical Vacuum Sensors. Advanced Optical Materials, 2020, 8, 2000678.	7.3	25
5	Er3+/Ho3+ codoped nanogarnet as an optical FIR based thermometer for a wide range of high and low temperatures. Journal of Alloys and Compounds, 2020, 847, 156541.	5.5	24
6	Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap. Nanophotonics, 2020, 9, 3535-3544.	6.0	27
7	GdVO4:Er3+/Yb3+ nanocrystalline powder as fluorescence temperature sensor. Application to monitor the temperature of an electrical component. Sensors and Actuators A: Physical, 2019, 299, 111628.	4.1	19
8	Fluorescence intensity ratio and whispering gallery mode techniques in optical temperature sensors: comparative study. Optical Materials Express, 2019, 9, 4126.	3.0	8
9	Design and Fabrication of an Optical Fiber Made of Water. Journal of Visualized Experiments, 2018, , .	0.3	0
10	Nanocrystalline silicon optomechanical cavities. Optics Express, 2018, 26, 9829.	3.4	11
11	Cavity optofluidics: a μdroplet's whispering-gallery mode makes a μvortex. Optics Express, 2018, 26, 192	1153.4	10
12	Light and Capillary Waves Propagation in Water Fibers. Scientific Reports, 2017, 7, 16633.	3.3	6
13	Liquid whispering-gallery-mode resonator as a humidity sensor. Optics Express, 2017, 25, 1165.	3.4	38
14	Astro-comb calibrator and spectrograph characterization using a turn-key laser frequency comb. Journal of Astronomical Telescopes, Instruments, and Systems, 2017, 3, 1.	1.8	9
15	Cavity optocapillaries. Optica, 2016, 3, 552.	9.3	32
16	Regular oscillations and random motion of glass microspheres levitated by a single optical beam in air. Optics Express, 2016, 24, 2850.	3.4	8
17	Level-crossing and modal structure in microdroplet resonators. Optics Express, 2016, 24, 13134.	3.4	11
18	Ripplon laser through stimulated emission mediated by water waves. Nature Photonics, 2016, 10, 758-761	31.4	28

LL MARTIN

#	Article	IF	CITATIONS
19	Water-walled microfluidics for high-optical finesse cavities. Nature Communications, 2016, 7, 10435.	12.8	35
20	Droplet optomechanics. Optica, 2016, 3, 175.	9.3	52
21	Tweezers controlled resonator. Optics Express, 2015, 23, 28914.	3.4	22
22	Conservation of photon rate in endothermic photoluminescence and its transition to thermal emission. Optica, 2015, 2, 585.	9.3	10
23	Optical refrigeration for ultra-efficient photovoltaics. , 2015, , .		0
24	Optical binding in white light. Optics Letters, 2015, 40, 1818.	3.3	5
25	Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique. Sensors and Actuators B: Chemical, 2014, 195, 324-331.	7.8	80
26	Energy transfer processes in Eu3+ doped nanocrystalline La2TeO6 phosphor. Journal of Luminescence, 2014, 145, 553-556.	3.1	10
27	Nanocrystal formation using laser irradiation on Nd3+ doped barium titanium silicate glasses. Journal of Alloys and Compounds, 2013, 553, 35-39.	5.5	6
28	Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480nm. Solar Energy Materials and Solar Cells, 2013, 116, 171-175.	6.2	44
29	Study of the focusing effect of silica microspheres on the upconversion of Er3+–Yb3+ codoped glass ceramics. Journal of Alloys and Compounds, 2013, 576, 363-368.	5.5	9
30	Clustering of Aerosols in a Single Potential-well Trap. , 2013, , .		0
31	Upconversion emission obtained in Yb^3+-Er^3+ doped fluoroindate glasses using silica microspheres as focusing lens. Optics Express, 2013, 21, 10667.	3.4	15
32	High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 3254.	2.1	18
33	Laser emission in Nd ³⁺ doped barium–titanium–silicate microspheres under continuous and chopped wave pumping in a non-coupled pumping scheme. Laser Physics, 2013, 23, 075801.	1.2	11
34	Local characterization of rare-earth-doped single microspheres by combined microtransmission and microphotoluminescence techniques. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 3293.	2.1	7
35	Optical study of the effect of the impurity content on the ferroelectric properties of Er3+ doped SBN glass-ceramic samples. Journal of Applied Physics, 2011, 110, .	2.5	7
36	Whispering gallery modes in a glass microsphere as a function of temperature. Optics Express, 2011, 19, 25792.	3.4	39

LL MARTIN

#	Article	IF	CITATIONS
37	Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope. Optics Letters, 2011, 36, 615.	3.3	26
38	Optical amplification properties of Dy3+-doped Gd2SiO4, Lu2SiO5 and YAl3(BO3)4 single crystals. Applied Physics B: Lasers and Optics, 2011, 103, 597-602.	2.2	12
39	Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic. Optical Materials, 2011, 33, 738-741.	3.6	16
40	Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors. Optical Materials, 2011, 33, 742-745.	3.6	104
41	Synthesis, characterization and optical spectroscopy of Eu3+ doped titanate nanotubes. Journal of Luminescence, 2011, 131, 2473-2477.	3.1	19
42	Transfer and backtransfer processes in Yb3+–Er3+ codoped Strontium Barium Niobate glass-ceramics. Journal of Luminescence, 2011, 131, 2446-2450.	3.1	9
43	Structural changes induced on strontium barium niobate glass byÂfemtosecond laser irradiation. Applied Physics A: Materials Science and Processing, 2010, 98, 879-884.	2.3	4
44	Crystallization effect on Tm3+–Yb3+ codoped SBN glass ceramics. Optical Materials, 2010, 32, 1385-1388.	3.6	4
45	Local devitrification of Dy3+ doped Ba2TiSi2O8 glass by laser irradiation. Optical Materials, 2010, 33, 186-190.	3.6	19
46	Formation of Nd3+ doped Strontium Barium Niobate nanocrystals by two different methods. Optical Materials, 2010, 32, 1389-1392.	3.6	3
47	Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate crystal. Optical Materials, 2010, 33, 196-199.	3.6	15
48	Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation. Icarus, 2009, 199, 458-476.	2.5	26