Ll Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3394256/publications.pdf

Version: 2024-02-01

48	895	18	28
papers	citations	h-index	g-index
49	49	49	1193
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors. Optical Materials, 2011, 33, 742-745.	3.6	104
2	Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique. Sensors and Actuators B: Chemical, 2014, 195, 324-331.	7.8	80
3	Droplet optomechanics. Optica, 2016, 3, 175.	9.3	52
4	Experimental enhancement of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exciting at 1480nm. Solar Energy Materials and Solar Cells, 2013, 116, 171-175.	6.2	44
5	Whispering gallery modes in a glass microsphere as a function of temperature. Optics Express, 2011, 19, 25792.	3.4	39
6	Liquid whispering-gallery-mode resonator as a humidity sensor. Optics Express, 2017, 25, 1165.	3.4	38
7	Water-walled microfluidics for high-optical finesse cavities. Nature Communications, 2016, 7, 10435.	12.8	35
8	Cavity optocapillaries. Optica, 2016, 3, 552.	9.3	32
9	Ripplon laser through stimulated emission mediated by water waves. Nature Photonics, 2016, 10, 758-761.	31.4	28
10	Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap. Nanophotonics, 2020, 9, 3535-3544.	6.0	27
11	Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation. Icarus, 2009, 199, 458-476.	2.5	26
12	Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope. Optics Letters, 2011, 36, 615.	3.3	26
13	Luminescent Nd ³⁺ â€Based Microresonators Working as Optical Vacuum Sensors. Advanced Optical Materials, 2020, 8, 2000678.	7.3	25
14	Er3+/Ho3+ codoped nanogarnet as an optical FIR based thermometer for a wide range of high and low temperatures. Journal of Alloys and Compounds, 2020, 847, 156541.	5 . 5	24
15	Tweezers controlled resonator. Optics Express, 2015, 23, 28914.	3.4	22
16	Local devitrification of Dy3+ doped Ba2TiSi2O8 glass by laser irradiation. Optical Materials, 2010, 33, 186-190.	3.6	19
17	Synthesis, characterization and optical spectroscopy of Eu3+ doped titanate nanotubes. Journal of Luminescence, 2011, 131, 2473-2477.	3.1	19
18	GdVO4:Er3+/Yb3+ nanocrystalline powder as fluorescence temperature sensor. Application to monitor the temperature of an electrical component. Sensors and Actuators A: Physical, 2019, 299, 111628.	4.1	19

#	Article	IF	CITATIONS
19	High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 3254.	2.1	18
20	Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic. Optical Materials, 2011, 33, 738-741.	3.6	16
21	Pump and probe measurements of optical amplification at 584nm in dysprosium doped lithium niobate crystal. Optical Materials, 2010, 33, 196-199.	3.6	15
22	Upconversion emission obtained in Yb^3+-Er^3+ doped fluoroindate glasses using silica microspheres as focusing lens. Optics Express, 2013, 21, 10667.	3.4	15
23	Optical amplification properties of Dy3+-doped Gd2SiO4, Lu2SiO5 and YAl3(BO3)4 single crystals. Applied Physics B: Lasers and Optics, 2011, 103, 597-602.	2.2	12
24	Laser emission in Nd ³⁺ doped bariumâ€"titaniumâ€"silicate microspheres under continuous and chopped wave pumping in a non-coupled pumping scheme. Laser Physics, 2013, 23, 075801.	1.2	11
25	Level-crossing and modal structure in microdroplet resonators. Optics Express, 2016, 24, 13134.	3.4	11
26	Nanocrystalline silicon optomechanical cavities. Optics Express, 2018, 26, 9829.	3.4	11
27	Energy transfer processes in Eu3+ doped nanocrystalline La2TeO6 phosphor. Journal of Luminescence, 2014, 145, 553-556.	3.1	10
28	Conservation of photon rate in endothermic photoluminescence and its transition to thermal emission. Optica, 2015, 2, 585.	9.3	10
29	Cavity optofluidics: a μdroplet's whispering-gallery mode makes a μvortex. Optics Express, 2018, 26, 1911	53.4	10
30	Transfer and backtransfer processes in Yb3+–Er3+ codoped Strontium Barium Niobate glass-ceramics. Journal of Luminescence, 2011, 131, 2446-2450.	3.1	9
31	Study of the focusing effect of silica microspheres on the upconversion of Er3+â€"Yb3+ codoped glass ceramics. Journal of Alloys and Compounds, 2013, 576, 363-368.	5.5	9
32	Astro-comb calibrator and spectrograph characterization using a turn-key laser frequency comb. Journal of Astronomical Telescopes, Instruments, and Systems, 2017, 3, 1.	1.8	9
33	Regular oscillations and random motion of glass microspheres levitated by a single optical beam in air. Optics Express, 2016, 24, 2850.	3.4	8
34	Fluorescence intensity ratio and whispering gallery mode techniques in optical temperature sensors: comparative study. Optical Materials Express, 2019, 9, 4126.	3.0	8
35	Optical study of the effect of the impurity content on the ferroelectric properties of Er3+ doped SBN glass-ceramic samples. Journal of Applied Physics, 2011, 110, .	2.5	7
36	Local characterization of rare-earth-doped single microspheres by combined microtransmission and microphotoluminescence techniques. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 3293.	2.1	7

#	Article		CITATIONS
37	Microspheres with Atomic-Scale Tolerances Generate Hyperdegeneracy. Physical Review X, 2020, 10, .		7
38	Nanocrystal formation using laser irradiation on Nd3+ doped barium titanium silicate glasses. Journal of Alloys and Compounds, 2013, 553, 35-39.		6
39	Light and Capillary Waves Propagation in Water Fibers. Scientific Reports, 2017, 7, 16633.		6
40	Optical binding in white light. Optics Letters, 2015, 40, 1818.	3.3	5
41	Structural changes induced on strontium barium niobate glass byÂfemtosecond laser irradiation. Applied Physics A: Materials Science and Processing, 2010, 98, 879-884.	2.3	4
42	Crystallization effect on Tm3+–Yb3+ codoped SBN glass ceramics. Optical Materials, 2010, 32, 1385-1388.	3.6	4
43	Temperature Sensing with Nd3+ Doped YAS Laser Microresonators. Applied Sciences (Switzerland), 2021, 11, 1117.	2.5	4
44	Formation of Nd3+ doped Strontium Barium Niobate nanocrystals by two different methods. Optical Materials, 2010, 32, 1389-1392.	3.6	3
45	Thermo-optic response of MEH-PPV films incorporated to monolithic Fabry-Perot microresonators. Dyes and Pigments, 2020, 182, 108625.	3.7	1
46	Clustering of Aerosols in a Single Potential-well Trap., 2013,,.		0
47	Optical refrigeration for ultra-efficient photovoltaics. , 2015, , .		0
48	Design and Fabrication of an Optical Fiber Made of Water. Journal of Visualized Experiments, 2018, , .	0.3	0