Keisuke Natsui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3393988/publications.pdf

Version: 2024-02-01

471509 610901 25 856 17 24 citations h-index g-index papers 26 26 26 842 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes. Angewandte Chemie - International Edition, 2018, 57, 2639-2643.	13.8	121
2	Anodic Oxidation on a Boronâ€Doped Diamond Electrode Mediated by Methoxy Radicals. Angewandte Chemie - International Edition, 2012, 51, 5443-5446.	13.8	95
3	Switchable Product Selectivity in the Electrochemical Reduction of Carbon Dioxide Using Boron-Doped Diamond Electrodes. Journal of the American Chemical Society, 2019, 141, 7414-7420.	13.7	81
4	Selective production of methanol by the electrochemical reduction of CO ₂ on boron-doped diamond electrodes in aqueous ammonia solution. RSC Advances, 2016, 6, 102214-102217.	3.6	61
5	Effect of doping level on the electrochemical reduction of CO2 on boron-doped diamond electrodes. Diamond and Related Materials, 2018, 86, 167-172.	3.9	61
6	Surface Hydrogenation of Boron-Doped Diamond Electrodes by Cathodic Reduction. Analytical Chemistry, 2017, 89, 11341-11347.	6.5	59
7	Long-Term Continuous Conversion of CO ₂ to Formic Acid Using Boron-Doped Diamond Electrodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 8108-8112.	6.7	47
8	Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate. Chemosphere, 2018, 210, 524-530.	8.2	39
9	Effect of alkali-metal cations on the electrochemical reduction of carbon dioxide to formic acid using boron-doped diamond electrodes. RSC Advances, 2017, 7, 22510-22514.	3.6	36
10	Influence of Electrolyte on the Electrochemical Reduction of Carbon Dioxide Using Boronâ€Doped Diamond Electrodes. ChemistrySelect, 2018, 3, 10209-10213.	1.5	36
11	Electrochemical reduction of nitrate on boron-doped diamond electrodes: Effects of surface termination and boron-doping level. Chemosphere, 2020, 251, 126364.	8.2	33
12	In Situ Spectroscopic Study on the Surface Hydroxylation of Diamond Electrodes. Analytical Chemistry, 2019, 91, 4980-4986.	6.5	26
13	CO ₂ reduction to formic acid at low overpotential on BDD electrodes modified with nanostructured CeO ₂ . Journal of Materials Chemistry A, 2019, 7, 17896-17905.	10.3	25
14	Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes. Angewandte Chemie, 2018, 130, 2669-2673.	2.0	24
15	Photochromism-Induced Amplification of Critical Current Density in Superconducting Boron-Doped Diamond with an Azobenzene Molecular Layer. ACS Applied Materials & Samp; Interfaces, 2015, 7, 887-894.	8.0	22
16	The Utilization of Boron-doped Diamond Electrodes for the Electrochemical Reduction of CO _{: Sub>: Toward the Production Compounds with a High Number of Carbon Atoms. Electrochemistry, 2019, 87, 109-113.}	1.4	19
17	Electrochemical properties of fluorinated boron-doped diamond electrodes <i>via</i> fluorine-containing plasma treatment. Physical Chemistry Chemical Physics, 2019, 21, 13788-13794.	2.8	13
18	Recovery of copper from dilute cupric sulfate solution by electrodeposition method using boronâ€doped diamond electrodes. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2081-2086.	1.8	10

#	Article	IF	CITATION
19	Modulation of critical current density in polycrystalline boron-doped diamond by surface modification. Physica Status Solidi (B): Basic Research, 2013, 250, 1943-1949.	1.5	8
20	Increasing the Electric Doubleâ€Layer Capacitance in Boronâ€Doped Diamond Electrodes. ChemElectroChem, 2019, 6, 1683-1687.	3.4	7
21	Electrochemical mineralization of dimethyl sulfoxide on boron-doped diamond electrodes. Environmental Technology and Innovation, 2019, 15, 100409.	6.1	6
22	Electrochemical Measurement of Bismuth Clusters in Dendrimer Through Transformation from Atomicity Controlled Complexes. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 169-173.	3.7	3
23	Unique properties of fine bubbles in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. Electrochimica Acta, 2021, 389, 138769.	5.2	3
24	Modulation of critical current density in polycrystalline boron-doped diamond by surface modification. Physica Status Solidi (B): Basic Research, 2013, 250, .	1.5	0
25	Electrochemical Properties of BDD Electrodes by Surface Control. , 2022, , 9-22.		0